

AN76000 - CY8CMBR2110

CapSense
®
 Design Guide

Doc. No. 001-76000 Rev. *G

Cypress Semiconductor

198 Champion Court

San Jose, CA 95134-1709

www.cypress.com

file:///C:/Work/AppNotes/CDT%20197763/001-76000_0C_S/001-76000_0C_S/www.cypress.com

 Copyrights

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 2

Copyrights

© Cypress Semiconductor Corporation, 2012-2017. This document is the property of Cypress Semiconductor
Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or
firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property
laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws
and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents,
copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license
agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then
Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1)
under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the
Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute
the Software in binary code form externally to end users (either directly or indirectly through resellers and
distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that
are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software
solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation
of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING
HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the
application or use of any product or circuit described in this document. Any information provided in this document,
including any sample design information or programming code, is provided only for reference purposes. It is the
responsibility of the user of this document to properly design, program, and test the functionality and safety of any
application made of this information and any resulting product. Cypress products are not designed, intended, or
authorized for use as critical components in systems designed or intended for the operation of weapons, weapons
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including
resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other
uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended
Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in
whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from
or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or
related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-
USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other
countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be
claimed as property of their respective owners.

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 3

Contents

1. Introduction .. 6

1.1 Abstract ... 6
1.2 Cypress’s CapSense Documentation Ecosystem .. 6
1.3 CY8CMBR2110 CapSense Express Device Features .. 8
1.4 Document Conventions ... 9
1.5 Acronyms .. 9

2. CapSense Technology .. 11

2.1 CapSense Fundamentals .. 11
2.2 Capacitive Sensing Method ... 12

2.2.1 CapSense Sigma-Delta (CSD) ... 12
2.3 SmartSense Auto-Tuning .. 14

2.3.1 Process Variation.. 14
2.3.2 Reduced Design Cycle Time .. 14

3. CapSense Schematic Design ... 15

3.1 CapSense Controller Pins ... 15
3.1.1 CapSense Buttons (CSx) .. 15
3.1.2 General-Purpose Outputs (GPOx) .. 15
3.1.3 Modulating Capacitor (CMOD) ... 16
3.1.4 Buzzer Signal Outputs (BuzzerOut0, BuzzerOut1) ... 16
3.1.5 Host-Controlled GPOs (HostControlGPO0, HostControlGPO1) ... 18
3.1.6 Attention/Sleep ... 18

3.2 CapSense Controller Configuration ... 20
3.2.1 Button Auto Reset (ARST) .. 20
3.2.2 Noise Immunity ... 20
3.2.3 Automatic Threshold ... 20
3.2.4 Toggle ON/OFF .. 21
3.2.5 Flanking Sensor Suppression (FSS) ... 21
3.2.6 LED ON Time ... 22
3.2.7 LED Effect Parameters ... 22
3.2.8 Latch Status Read .. 27
3.2.9 Analog Voltage Support .. 28
3.2.10 Sensitivity Control ... 29
3.2.11 Debounce Control ... 29
3.2.12 System Diagnostics .. 29
3.2.13 Button Scan Rate.. 31
3.2.14 I

2
C Communication ... 32

3.3 Design Toolbox .. 33
3.3.1 General Layout Guidelines ... 33

 Contents

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 4

3.3.2 Layout Estimator ... 33
3.3.3 CP, Power Consumption and Response Time Calculator ... 34
3.3.4 Design Validation .. 36

3.4 Configuring the CY8CMBR2110 .. 37
3.4.1 EZ-Click Customizer Tool ... 38
3.4.2 Configuring the Device using a Host Processor ... 40
3.4.3 Third-party Programmer ... 46

3.5 CY8CMBR2110 Reset ... 46
3.5.1 Hardware Reset .. 46
3.5.2 Software Reset ... 46

4. Electrical and Mechanical Design Considerations ... 47

4.1 Overlay Selection .. 47
4.2 ESD Protection .. 48

4.2.1 Prevent ... 48
4.2.2 Redirect .. 48
4.2.3 Clamp ... 48

4.3 Electromagnetic Compatibility (EMC) Considerations ... 49
4.3.1 Radiated Interference ... 49
4.3.2 Conducted Immunity and Emissions ... 49

4.4 PCB Layout Guidelines ... 49

5. Low-Power Design Considerations ... 50

5.1 System Design Recommendations .. 50
5.2 Calculating Average Power ... 50

5.2.1 Button Scan Rate (TR) .. 51
5.2.2 Scan Time (TS) ... 52
5.2.3 Average Current in NO TOUCH State (IAVE_NT) ... 53
5.2.4 Average Current in TOUCH State (IAVE_T) ... 53
5.2.5 Percentage of Active Time (P) .. 53
5.2.6 Average Use Current (IAVE_U) .. 53
5.2.7 Average Current (IAVE) .. 54
5.2.8 Average Power (PAVE) ... 54
5.2.9 Example Calculation ... 54

5.3 Sleep Modes.. 55
5.3.1 Low-Power Sleep Mode .. 55
5.3.2 Deep Sleep Mode ... 56

6. Resources .. 57

6.1 Website ... 57
6.2 Datasheet .. 57
6.3 Design Toolbox .. 57
6.4 EZ-Click™ Customizer Tool .. 57
6.5 Design Support .. 57

7. Appendix .. 58

7.1 Schematic Example ... 58
7.1.1 Schematic 1: Ten Buttons with Ten GPOs ... 58
7.1.2 Schematic 2: Eight Buttons with Analog Voltage Output .. 60

7.2 APIs for CY8CMBR2110 Configuration ... 62

 Contents

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 5

7.2.1 High-Level APIs .. 62
7.2.2 Low-Level APIs ... 80

Glossary .. 81

Revision History ... 87

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 6

1. Introduction

1.1 Abstract

This document describes how to implement capacitive sensing functionality using Cypress’s CapSense
®
 Express

CY8CMBR2110 device. The following topics are covered in this guide:

 Features of the CY8CMBR2110

 CapSense principles of operation

 Configuration options of the CY8CMBR2110 device

 Using the Design Toolbox with the CY8CMBR2110

 System electrical and mechanical design considerations for the CY8CMBR2110

 Low-power design considerations for the CY8CMBR2110

 Additional resources and support for designing CapSense into your system

1.2 Cypress’s CapSense Documentation Ecosystem

Figure 1-1 and Table 1-1 summarize the CapSense documentation ecosystem. These resources allow the
implementers to quickly access the information they need to complete a CapSense

product design. Figure 1-1 shows

a typical product design cycle with capacitive sensing; this document covers the topics highlighted in green. Table 1-1
offers links to supporting documents for each of the numbered tasks in Figure 1-1.

 Introduction

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 7

Figure 1-1. Typical CapSense Product Design Flow

3. Select CapSense device based on

required functionality

2. Specify system requirements and

characteristics

11. Preproduction build (prototype)

12. Test and evaluate system functionality and

CapSense performance

Meets

specifications?

13. Production

Yes

No

= Topics covered in this document

1. Understand CapSense technology

4. Mechanical

Design

5. Schematic

capture and

PCB layout

Design for CapSense

9. Programming PSoC
†

10. CapSense

Configuration*

6. PSoC Designer project

creation†

7. Firmware

development†

8. CapSense tuning†

*
†

= Applicable to MBR family of devices only

= Applicable to programmable devices only

Table 1-1. Cypress Documents That Support Numbered Design Tasks of Figure 1-1

Numbered Design Task of
Figure 1-1

Supporting Cypress CapSense Documentation

1 Getting Started with CapSense

2 CY8CMBR2110 Device Datasheet

3 Getting Started with CapSense

4 This document

5 This document

6 Not applicable for CY8CMBR2110

7 Not applicable for CY8CMBR2110

8 Not applicable for CY8CMBR2110

9 Not applicable for CY8CMBR2110

10 This document

http://www.cypress.com/?rID=48787
http://www.cypress.com/?rID=66754
http://www.cypress.com/?rID=48787

 Introduction

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 8

1.3 CY8CMBR2110 CapSense Express Device Features

Cypress’s low-power CapSense controller can easily add capacitive touch sensing to your user interface. The
device’s features include:

 Register configurable CapSense Controller

 Does not require firmware or device programming

 Ten button solution configurable through I
2
C protocol

 Ten general purpose outputs (GPOs)

 GPOs are linked to CapSense buttons

 GPOs support direct LED drive

 SmartSense™ Auto-Tuning

 CapSense algorithm that continuously compensates for system, manufacturing, and environmental changes

 Dynamically sets CapSense parameters

 Eliminates the need for manual system tuning

 Wide parasitic capcitiance(CP) range (5-40 pF)

 Advanced features

 Flanking Sensor Suppression (FSS)

o Distinguishes between signals from closely spaced buttons

 User-configurable LED effects

o On system power-on

o On button touch

o LED ON Time after button release

o Standby mode LED Brightness

 Buzzer signal output

 Analog voltage output

o Using external resistor bridge

 Attention line interrupt to host to indicate any CapSense button status change

 CapSense performance data through I
2
C interface

o Simplifies production line testing and system debug

 Noise immunity

 Specifically designed for superior noise immunity to external radiated and conducted noise

 Low radiated noise emission

 System diagnostics

 Button shorts

 Improper value of modulating capacitor (CMOD)

 Parasitic capacitance (CP) value out of range

 EZ-Click™ Customizer Tool

 Simple graphical configuration

 Dynamically configures all features

 Configurations can be saved and reused later

 Introduction

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 9

 I
2
C interface

 No clock stretching

 Supports up to 100-kHz speed

 Wide operating voltage range

 1.71—5.5 V

 Ideal for both regulated and unregulated battery applications

 Low power consumption

 Average current consumption of 23 µA
[1]

 per button

 Deep sleep current: 100 nA

 Industrial temperature range: –40 °C to +85 °C

 32-pin QFN package (5 mm x 5 mm x 0.6 mm)

1.4 Document Conventions

Convention Usage

Courier New
Displays file locations, user-entered text, and source code:
C:\ ...cd\icc\

Italics
Displays file names and reference documentation:
Read about the sourcefile.hex file in the PSoC Designer User Guide.

[Bracketed, Bold]
Displays keyboard commands in procedures:
[Enter] or [Ctrl] [C]

File > Open
Represents menu paths:
File > Open > New Project

Bold
Displays commands, menu paths, and icon names in procedures:
Click the File icon and then click Open.

Times New Roman
Displays an equation:
2 + 2 = 4

Text in gray boxes Describes Cautions or unique functionality of the product.

1.5 Acronyms

Acronym Description

AC Alternating current

ARST Auto Reset

CF Finger capacitance

CP Parasitic capacitance

CS CapSense

CSD CapSense Sigma Delta

1
 Four buttons used, 180 button touches per hour, average button touch time = 1000 ms, buzzer disabled, Button Touch LED

Effects disabled, 10 pF < (CP of all buttons) < 20 pF, Button Scan Rate = 541 ms, power consumption optimized, Noise Immunity
level "Normal", CSx sensitivity "Medium".

 Introduction

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 10

Acronym Description

EMC Electromagnetic Compatibility

ESD Electrostatic Discharge

FSS Flanking Sensor Suppression

GPO General-Purpose Output

MSB Most significant bit

LCD Liquid Crystal Display

LED Light-Emitting Diode

LSB Least significant bit

PCB Printed Circuit Board

POR Power on Reset

POST Power on Self-Test

RF Radio Frequency

SNR Signal to Noise Ratio

SMPS Switched Mode Power Supply

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 11

2. CapSense Technology

2.1 CapSense Fundamentals

CapSense is a touch sensing technology that works by measuring the capacitance of each sensor input pin on the
CapSense controller. The total capacitance on each of the sensor pins can be modeled as equivalent lumped
capacitors with values of CX,1 through CX,n as shown in Figure 2-1. Circuitry internal to the CY8CMBR2110 device
converts the magnitude of each CX into a digital code that is stored for post-processing. A modulating capacitor,
CMOD, is used by the CapSense controller’s internal circuitry. CMOD will be discussed in more detail in Capacitive
Sensing Method.

Figure 2-1. CapSense Implementation in a CY8CMBR2110 Device

CY8CMBR2110

CMODSensor
Capacitors CX,1 CX,2 CX,n

Each sensor input pin is connected to a sensor pad by traces, vias, or both, as necessary. A nonconductive overlay is
required to cover each sensor pad and constitutes the product’s touch interface. When a finger comes into contact
with the overlay, the conductivity and mass of the body effectively introduces a grounded conductive plane parallel to
the sensor pad. This action is represented in Figure 2-2. This arrangement constitutes a parallel plate capacitor,
whose capacitance is given by the following equation:

 Equation 1

Where:

CF = The capacitance affected by a finger in contact with the overlay over a sensor

ε0 = Free space permittivity

εr = Dielectric constant (relative permittivity) of overlay

A = Area of finger and sensor pad overlap

D = Overlay thickness

 CapSense Technology

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 12

Figure 2-2. Section of Typical CapSense PCB with the Sensor Being Activated by a Finger

In addition to the parallel plate capacitance, a finger in contact with the overlay causes electric field fringing between
itself and other conductors in the immediate vicinity. Typically, the effect of these fringing fields is minor, and it can
usually be ignored.

Even without a finger touching the overlay, the sensor input pin has some parasitic capacitance (CP). CP results from
the combination of the CapSense controller internal parasitic and electric field coupling among the sensor pad,
traces, and vias, and other conductors in the system, such as ground plane, other traces, any metal in the product’s
chassis or enclosure, and so on. The CapSense controller measures the total capacitance (CX) connected to a
sensor pin.

When a finger is not touching a sensor, use this equation:

 Equation 2

With a finger on the sensor, CX equals the sum of CP and CF:

 Equation 3

In general, CP is an order of magnitude greater than CF. CP usually ranges from 10—20 pF, but in extreme cases it
can be as high as 40 pF. CF usually ranges from 0.1—0.4 pF.

2.2 Capacitive Sensing Method

CY8CMBR2110 device supports the CapSense Sigma Delta (CSD) with SmartSense Auto-Tuning for converting
sensor capacitance (CX) into digital counts. The CSD method is described in the following sections.

2.2.1 CapSense Sigma-Delta (CSD)
The CSD method in the CY8CMBR2110 device incorporates CX into a switched capacitor circuit, as shown in Figure
2-3. CX is alternatively connected to Gnd and the AMUX bus by the non-overlapping switches Sw1 and Sw2. Sw1
and Sw2 are driven by the Precharge Clock to bleed a current, isensor from the AMUX bus. The magnitude of isensor is
directly proportional to the magnitude of CX. The sigma-delta converter samples the AMUX bus voltage and
generates a modulating bit stream that controls the constant current source, IDAC. The IDAC charges AMUX such
that the average AMUX bus voltage is maintained at Vref. The sensor bleeds off isensor from CMOD, which, in
combination with Rbus, forms a low-pass filter that attenuates precharge switching transients at the sigma-delta
converter input.

 CapSense Technology

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 13

Figure 2-3. CSD Block Diagram

Cx isensor

Sigma-Delta

Converter

Precharge

Clock

Cmod

High-Z

input

Sw1

Sw2

CY8CMBR2110

Gnd

= External Connection

AMUX

Bus

Vref

Rbus

Gnd

IDAC

In order to maintain the AMUX bus voltage at Vref, the sigma-delta converter matches IDAC to isensor by controlling
the bit stream duty cycle. The sigma-delta converter stores the bit stream over the duration of a sensor scan, and the
accumulated result is a digital output, raw count, which is directly proportional to CX. This raw count is interpreted by
high-level algorithms to resolve the sensor state. Figure 2-4 plots the CSD raw counts from a number of consecutive
scans during which the sensor is touched and then released by a finger. As explained in CapSense Fundamentals,
the finger touch causes CX to increase by CF, which in turn causes raw counts to increase proportionally. By
comparing the shift in steady state raw count level to a predetermined threshold, the high-level algorithms can
determine whether the sensor is in an ON (Touch) or OFF (No Touch) state. To learn more about Raw Counts,
Finger Threshold, and Signal-to-Noise Ratio (SNR), refer to Getting Started with CapSense.

Figure 2-4. CSD Raw Counts During a Finger Touch

http://www.cypress.com/?rID=48787

 CapSense Technology

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 14

2.3 SmartSense Auto-Tuning

Tuning the touch-sensing user interface is critical for proper system operation and a pleasant user experience.
Unfortunately, tuning is time-consuming because it is an iterative process. In a typical development cycle, the
interface is tuned in the initial design phase, during system integration, and before production ramp. SmartSense
Auto-Tuning was developed to simplify the user interface development cycle. It is a CapSense algorithm that
continuously compensates for system, manufacturing, and environmental changes. It is easy to use and reduces
design cycle time by eliminating manual tuning during the prototype and manufacturing stages. SmartSense Auto-
Tuning tunes each CapSense button automatically at power up and maintains optimum button performance during
runtime. SmartSense Auto-Tuning adapts for manufacturing variation in PCBs and overlays and automatically tunes
out noise from sources such as LCD inverters, AC lines, and switch-mode power supplies.

2.3.1 Process Variation
The CY8CMBR2110 device’s SmartSense Auto-Tuning is designed to work with CP values in the range of 5—40 pF.
The sensitivity parameter for each button is set automatically, based on its characteristics. This parameter improves
yield in mass production because every button maintains a consistent response regardless of CP variation between
the buttons. CP can vary due to PCB layout and trace length, PCB manufacturing process variation, or vendor-to-
vendor PCB variation within a multi-sourced supply chain. The sensitivity of a button depends on CP; higher CP
values decrease sensitivity, resulting in decreased finger touch signal amplitude. A change in CP can result in a
button becoming too sensitive, not sensitive enough, or non-operational. When this happens, you must retune the
system and, in some cases, re-qualify the user interface subsystem. SmartSense Auto-Tuning resolves these issues.

SmartSense Auto-Tuning makes platform designs possible. For example, consider the capacitive touch sensing
multimedia keys on a laptop computer. The parasitic capacitance of the CapSense buttons can vary in different
models of the same platform design depending on the size of the laptop and the keyboard layout. In this example, a
wide-screen laptop model would have larger spaces between the buttons than a standard-screen model. Therefore, a
wide-screen model would have longer traces between each button and the CapSense controller, which would result
in higher CP values. Though the buttons’ functionality is identical for all of the laptop models, the buttons must be
tuned for each model. SmartSense Auto-Tuning lets you do platform designs using the recommended practices
shown in the PCB Layout in Getting Started with CapSense.

Figure 2-5. Design of Laptop Multimedia Keys for a 21-Inch Model

Figure 2-6. Design of Laptop Multimedia Keys for a 15-Inch Model with Identical Functionality and Button Size

2.3.2 Reduced Design Cycle Time
When you design a capacitive button interface, the most time-consuming tasks are firmware development, layout,
and button tuning. With a typical touch-sensing controller, the buttons must be retuned when the design is ported to
different models or when there are changes to the mechanical dimensions of the PCB or the button PCB layout. A
design with SmartSense Auto-Tuning meets these challenges because it does not require firmware development,
manual tuning, or retuning. In addition, SmartSense Auto-Tuning speeds up a typical design cycle. Figure 2-7
compares the design cycles of a typical touch-sensing controller and a SmartSense Auto-Tuning-based design.

Figure 2-7. Typical Capacitive User Interface Design Cycle Comparison

Feasibility

Study Schematics

Design

PCB Layout

Design

Mechanical Design

Review

System

Integration

Retuning for any

changes
Tuning process

Production Fine

Tuning

Design

Validation
Production

Typical capacitive user interface Design Cycle

Firmware

Development

Feasibility

Study

Schematics

Design

PCB Layout

Design

Mechanical Design

Review

System

Integration

Design

Validation
Production

CapSense® Express with SmartSense™ Auto-Tuning based

capacitive user interface Design Cycle

Device

Configuration

http://www.cypress.com/?rID=48787

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 15

3. CapSense Schematic Design

Cypress’s CY8CMBR2110 device is configured using hardware and the EZ-Click Customizer Tool via the I
2
C

interface. This section gives an overview of the CapSense controller pins and registers and how to configure them.

3.1 CapSense Controller Pins

Figure 3-1. CY8CMBR2110 Pin Diagram

CY8CMBR2110

QFN
(Top View)

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1

2

3

4

5

6

7

8

24

23

22

21

20

19

18

17

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

CS 0

CS 1

C
S

 2

C
S

 3

C
S

 4

C
S

 5

C
S

 6

CS 7

CS 8

CS 9GPO 0

GPO 1

GPO 2

GPO 4

G
P

O
 5

GPO 6

GPO 7

GPO 8

GPO 9

C
M

O
D

XRES

V
S

S

I2C SCL

I2
C

 S
D

A

B
u

z
z
e

rO
u

t0

B
u

z
z
e

rO
u

t1

H
o

s
tC

o
n

tr
o

lG
P

O
0

A
tt
te

n
ti
o

n
\S

le
e

p

H
o

s
tC

o
n

tr
o

lG
P

O
1

V
S

S

V
D

D

GPO 3

3.1.1 CapSense Buttons (CSx)
The CY8CMBR2110 controller has ten capacitive sense inputs, CS0—CS9. Each capacitive button requires a
connection to one of the capacitive sense inputs. You must ground all unused CapSense (CSx) input pins.

3.1.2 General-Purpose Outputs (GPOx)
There are ten active low outputs on the CY8CMBR2110 controller, GPO0—GPO9. Each output is driven by its
corresponding capacitive sensing input, CSx. You can use GPOs to directly drive LEDs or to replace mechanical
switches. GPOs are in strong drive

[2]
 mode. All unused GPO pins must be floated.

2
 When a pin is in strong drive mode, it is pulled up to VDD when the output is HIGH and pulled down to Ground when the output is

LOW.

http://www.cypress.com/?rID=58815

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 16

3.1.3 Modulating Capacitor (CMOD)
Connect a 2.2 nF (±10%) capacitor to the CMOD pin.

3.1.4 Buzzer Signal Outputs (BuzzerOut0, BuzzerOut1)
The buzzer signal outputs are used to give audio feedback when a CapSense button is touched. This is helpful in
designs where audio sensors are used. Use piezoelectric buzzers for buzzer signal outputs.

The buzzer signal outputs are strong drive outputs. The outputs are driven commonly by all of the CSx buttons. If a

buzzer is not used, BuzzerOut0 and BuzzerOut1 can be used as Host-Controlled GPOs. Table 3-2 shows the various

buzzer settings.

The buzzer signal outputs can have two configurations:

1. AC 1-pin Buzzer: A buzzer is connected to the BuzzerOut0 pin of the device as shown in Figure 3-2. A

square wave with a specified frequency and duty cycle is driven on this pin. The BuzzerOut1 pin can be left

floating, or it can be used as a host-controlled GPO.

2. AC 2-pin Buzzer: A buzzer is connected to the BuzzerOut0 and BuzzerOut1 pins of the device as shown in

Figure 3-3. Two out-of-phase square waves with a specified frequency and duty cycle are driven on these

pins.

Figure 3-2. AC 1-pin Buzzer Configuration

CY8CMBR2110

BuzzerOut0

Buzzer

VDD

BuzzerOut1

Figure 3-3. AC 2-pin Buzzer Configuration

CY8CMBR2110

BuzzerOut0

BuzzerOut1

Buzzer

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 17

The buzzer signal frequency is configurable. Table 3-1 lists the various frequencies and the corresponding output
duty cycle.

Table 3-1. Buzzer Signal Output frequency and duty cycle

Buzzer Signal Output
Frequency (kHz)

Duty Cycle

1.00 50%

1.14 57.14%

1.33 50%

1.60 60%

2.00 50%

2.67 66.7%

4.00 50%

Buzzer ON time has a range of (1 to 127) x Button Scan Rate Constant. To learn more about this constant, refer
Button Scan Rate. The buzzer signal output is driven for the configured time and does not depend on the button
touch time. The output goes to the idle state after the Buzzer ON time elapses, even if the button remains touched as
shown in Figure 3-4. The idle state of the buzzer pin can be configured to either VDD or Ground. The buzzer signal
output restarts immediately if a button is touched before the Buzzer ON time elapses as shown in Figure 3-5.

When you enable Buzzer Signal Output, the Buz_Op_Duration register (in the Device Configuration mode) should
have a minimum value of 1. To learn more about this register, refer to the CY8CMBR2110 Datasheet Appendix.

Figure 3-4. Buzzer Time-out

CS0

Buzzer
Output

Buzzer ON Time

CS0 kept touched

Figure 3-5. Buzzer Signal Output Restart

CS1

Buzzer
Output

Buzzer ON Time

CS1
Touched

CS0
Touched

Buzzer output
restarted

CS0

http://www.cypress.com/?rID=66754

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 18

3.1.5 Host-Controlled GPOs (HostControlGPO0, HostControlGPO1)
The Host Controlled GPOs’ logic states can be controlled by the host. These outputs are in strong drive mode.

If a buzzer is not used in your design, the BuzzerOut0 and BuzzerOut1 pins also can be used as host-controlled
GPOs. If an AC 1-pin buzzer is used, the BuzzerOut1 pin can be used as a host-controlled GPO.

The host can control these GPOs in the Operating mode, Production Line Test mode, and Debug Data mode.

Host-Controlled GPOs are in the LOW state at power-on and have to be configured after reset. The configuration
settings cannot be saved to flash memory, unlike other feature configuration settings.

HostControlGPO1 has a positive going pulse of 16 ms during power-on. To eliminate this pulse, use an external RC
network (± 5% tolerance) on the XRES pin as shown in Figure 3-6. This keeps the device in XRES reset during every
power-on. When the device comes out of XRES reset after 16 ms, normal operation occurs.

Table 3-2. Buzzer and Host-Controlled GPOs

Buzzer
Configuration

BuzzerOut0 pin BuzzerOut1 pin
Maximum Available Host

Controlled GPOs

No buzzer Floating / Host-Controlled GPO3 Floating / Host-Controlled GPO2 4

AC 1-pin Buzzer pin 0 Floating / Host-Controlled GPO2 3

AC 2-pin Buzzer pin 0 Buzzer pin 1 2

Figure 3-6. XRES Pin Configuration to Avoid HostControlGPO1 Pulse During Power-On

CY8CMBR2110

XRES

VDD
1 µF

3.2 kΩ

3.1.6 Attention/Sleep
Attention/Sleep is a bidirectional line in Open Drain Low drive mode that can be controlled by both the host and the
device. Attention/Sleep is used to read CapSense data from the device and to enter and exit Low-Power Sleep and
Deep Sleep modes.

3.1.6.1 Read Device Data

Two steps are required for the host to read data from the device.

1. The host pulls the Attention/Sleep line low.

2. The host initiates I
2
C communication with the device.

When the Attention/Sleep line is pulled high, the device is in Low-Power Sleep or Deep Sleep mode (if the Deep
Sleep bit in Host_Mode register is set). The device can NACK I

2
C communication at this time. Keep the

Attention/Sleep line pulled HIGH to conserve power.
To read the device data, the host can pull the Attention/Sleep line low at any time. When the Attention/Sleep line is
low, the device can NACK I

2
C communication, but very infrequently.

If any CapSense button is touched, the device pulls the Attention/Sleep line low to interrupt the host, as shown in
Figure 3-7. The host then can read the CapSense data using I

2
C communication with the device. If more than one

button is touched simultaneously, the Attention/Sleep line is pulled low for the duration, as shown in Figure 3-8. The
Attention/Sleep line goes high when the button is released.

The host should have both a falling edge and a rising edge triggered interrupt for the Attention/Sleep line, so it can
recognize both a button touch and a button release. If a rising edge triggered interrupt is not available, the host

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 19

should continuously poll the button status after the Attention/Sleep line goes low. Polling should be done at the Button
Scan Rate constant.

Figure 3-7. Attention/Sleep Line Status with CS0 and CS1 Touched Separately

Attention/Sleep
Line

CS1

CS0

Touch
CS1

Touch
CS0

Release
CS1

Release
CS0

Figure 3-8. Attention/Sleep Line Status with CS0 and CS1 Touched Simultaneously

Attention/Sleep
Line

CS1

CS0

Touch
CS0

Touch
CS1

Release
CS1

Release
CS0

3.1.6.2 Sleep Modes

There are two possible sleep mode configurations

1. Pull the Attention/Sleep line to VDD to enable Low Power Sleep Mode.

2. Pull the Attention/Sleep line to VDD and set the Deep Sleep bit in Host_Mode register (in Operating Mode) to
enable Deep Sleep Mode.

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 20

3.2 CapSense Controller Configuration

3.2.1 Button Auto Reset (ARST)
Button Auto Reset determines the maximum time a button is considered to be ON when CSx is continuously touched.
The button is turned OFF after the ARST period. This feature prevents a button from getting stuck if a metal object is
placed too close to it. The ARST period can be configured to either 5 seconds or 20 seconds. The Button Auto Reset
is shown in Figure 3-9.

Figure 3-9. Button Auto Reset

CS0

GPO0

Auto Reset period

GPO0 not driven as CS0
is considered to be OFF

Button is touched for more
than the Auto Reset period

After the CSx is turned off because of Button Auto Reset and after the button is released, do not touch the button for

a time equal to the Button Scan Rate.

3.2.2 Noise Immunity
This setting determines the device’s immunity to external radiated and conducted noise such as audio frequency
noise from power amplifiers, radio frequency noise from wireless transmitters, ESD, and power line surges.

In a system without major noise concerns, select “Normal” Noise Immunity. For a system in a high-noise
environment, select “High” Noise Immunity. Power consumption and response time increase when Noise Immunity is
“High”. If you require the same response time with “High” Noise Immunity, reduce the button debounce value. For
more information, refer to Debounce Control.

3.2.3 Automatic Threshold
As explained in CapSense Sigma-Delta (CSD), the sensor ON or OFF state is determined by comparing the shift in
raw counts to a predetermined threshold, called the Finger Threshold. Finger Threshold is configurable and decides
the other thresholds for the device. To learn more about the Finger Threshold, refer to Getting Started with
CapSense.

You can configure the Finger Threshold for each button individually or use the Automatic Threshold feature. The
Automatic Threshold sets the various thresholds dynamically for each button, depending on the noise in the
environment. For a variable noise environment, use Automatic Threshold. If you need to manually adjust the finger
threshold, disable Automatic Threshold and set the finger threshold to the desired level.

http://www.cypress.com/?rID=48787
http://www.cypress.com/?rID=48787

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 21

3.2.4 Toggle ON/OFF
When Toggle ON/OFF is enabled, the state of GPOx changes on every rising edge of CSx. Toggle ON/OFF
configuration is shown in Figure 3-10.

You can enable the toggle ON/OFF feature on each CapSense button individually.

Figure 3-10. Example of Toggle ON/OFF Feature

CS0

GPO0

3.2.5 Flanking Sensor Suppression (FSS)
FSS distinguishes between signals from closely spaced buttons, eliminating false touches. It ensures that the system
recognizes only the first button touched. FSS allows only one CSx to be in the TOUCH state at a time. If a finger
contacts multiple CSx buttons, only the first one to sense a TOUCH state will turn ON.

FSS also is useful when nearby buttons can produce opposite effects such as an interface with two buttons for
brightness control (UP or DOWN).

FSS can be enabled for each button individually. FSS configuration is shown in Figure 3-11 and Figure 3-12.

In applications such as washing machine panels, buttons can be separated into two groups: one with FSS enabled
and one with FSS disabled. This allows you to distinguish between closely spaced buttons at one end of the design,
while accommodating multi-touch functionality at the other end.

Figure 3-11. FSS When Only One Button is Touched

CS0 CS1 CS2 CS3 CS0 CS1 CS2 CS3

Figure 3-12. FSS When Multiple Buttons are Touched With One Button ON Previously

CS1 is reported as ON upon touch No button is ON prior to the touch

CS1 is touched; reported ON CS2 is also touched along with CS1;
only CS1 is reported ON

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 22

3.2.6 LED ON Time
LED ON Time specifies the duration for which GPOx is driven low after CSx is released as shown in Figure 3-13.
LED ON Time can range from 0—5100 ms, with a resolution of 20 ms.

Figure 3-13. LED ON Time

CS0

GPO0

LED ON Time

LED ON Time varies from device to device. Accuracy is ±10% at a range of -40 °C to +85 °C.

If a Button Auto Reset (ARST) is triggered for CSx, LED ON Time is not applied on GPOx. LED ON Time is disabled
if Toggle ON/OFF is enabled.

LED ON Time applies only to one GPOx at a time, meaning the LED ON Time counter resets every time a CSx
transitions to a NO TOUCH state. Figure 3-14 illustrates how LED ON Time operates when multiple buttons are
touched. CS1 resets the LED ON Time counter, causing GPO0 to turn OFF prematurely.

Figure 3-14. LED ON Timing for Multiple Buttons

CS0

GPO0

CS1

GPO1

Start LED ON Time
Counter

Restart LED ON
Time Counter

Reset LED ON
Time Counter

LED ON Time

3.2.7 LED Effect Parameters
Power-On LED Effects and Button Touch LED Effects use the following parameters:

 Low-brightness: Minimum LED intensity

 Low-brightness time: The time period the LED remains in a low-brightness state

 Ramp-up time: The time period the LED transitions from low-brightness to high-brightness

 High-brightness: Maximum LED intensity

 High-brightness time: The time period the LED remains in a high-brightness state

 Ramp-down time: The time period the LED transitions from high-brightness to low-brightness

 Repeat rate: The number of times the effects are repeated

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 23

GPOs are configured in groups to have the same parameters. The different groups are:

 {GPO1, GPO2, GPO3}

 {GPO4, GPO5, GPO6}

 {GPO7, GPO8, GPO9}

GPO0’s parameters can be configured separately. This functionality is useful in designs where the CS0 button has a
special function such as the power button.

The brightness levels can range from 0—100%. The time range is 0—1600 ms. High-brightness should be kept
higher than low-brightness.

3.2.7.1 Power-On LED Effects

If this feature is enabled, all LEDs connected to GPOs show dimming and fading effects for an initial time, at system
power-on. You can configure these effects and the effect time. During this time, all CapSense buttons are disabled.
The device responds to any button touch only after the effects are complete.

The effects are seen after the device initialization time from power-on. This time is less than 350 ms if Noise Immunity
is “Normal” and less than 1000 ms if Noise Immunity is “High”.

After power-on, system diagnostics, including a power-on self-test, are performed. If any CapSense button fails, the
effects are not seen on the corresponding GPO. To learn more about this test, see System Diagnostics.

During Power-On LED Effects, the device ACKs I
2
C communication, but all write commands are ignored. The host

can only read Operating Mode data.

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 24

Power-On LED Effects can be configured to occur concurrently or sequentially on all the GPOs as shown in
Figure 3-15 and Figure 3-16.

Figure 3-15. Example Power-On LED Effects (Concurrent)
[3]

GPOx LED
Brightness

90%

Ram
p

Up

Ram
p Dow

n

10%

500
ms

200
ms

500
ms

200
ms

Power on

<= (350 ms/
1000 ms)

90% Ram
p Dow

n

10%

500
ms

200
ms

500
ms

200
ms

Ram
p

Up

Normal
Operation

Effects
completed

0%

<= (3150 ms / 3800 ms)

0%
10%

Figure 3-16. Example Power-On LED Effects (Sequential) with Two-Button Design
[4]

GPO0 LED
Brightness

Ra
m

p
U

p

Ram
p D

ow
n

300
ms

300
ms

Power on

<= 350ms/
1000 ms

Normal
Operation

Effects
completed

GPO1 LED
Brightness

<= 1950 ms / 2600 ms

0% 0%

0%

100%

100
ms

10%

100
ms Ram

p D
ow

n

100%

10%

Ra
m

p
U

p

300
ms

300
ms

100
ms

100
ms

0%

10%

10%

3
 Ramp up time = 500 ms; High-brightness = 90%; High-brightness time = 200 ms; Ramp down time = 500 ms;

 Low-brightness = 10%; Low-brightness time = 200 ms; Repeat rate = 1
4
 Ramp up time = 300 ms; High-brightness = 100%; High-brightness time = 100 ms; Ramp down time = 300 ms;

Low-brightness = 10%; Low-brightness time = 100 ms; Repeat rate = 0

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 25

3.2.7.2 Button Touch LED Effects

When this feature is enabled if a button is touched, the associated LEDs connected to GPOs show dimming and
fading effects. You can configure these effects and the effect time.

Button-Controlled LED Effects can be breathing effect enabled or disabled. Both are shown in Figure 3-17.

Breathing Effect Enabled: With the breathing effect enabled, LED intensity changes from Standby Mode LED
Brightness to low-brightness immediately when a button is touched. The LED then ramps up to high-brightness and
stays at that level for high-brightness time. The LED then ramps down to low-brightness and stays at that level for
low-brightness time. This effect repeats as long as the button is touched. When the button is released, the breathing
effect cycle continues until it is complete. The breathing effects cycle may repeat depending on the repeat rate.

Breathing Effect Disabled: With the breathing effect disabled, the LED intensity changes from Standby Mode LED
Brightness to low-brightness immediately when a button is touched. The LED then ramps up to high-brightness and
stays at that level as long as the button is touched. When the button is released, the LED maintains high-brightness
for high-brightness time then ramps down to low-brightness and stays at that level for low-brightness time. This effect
may repeat depending on the repeat rate.

If the Button Touch LED Effects are ongoing on a GPOx and the corresponding CSx is touched again, then the
pattern restarts on GPOx.

If the Toggle ON/OFF feature is enabled, the LEDs toggle between Standby Mode LED Brightness and high-
brightness on successive button touches as shown in Figure 3-18.

When Button Touch LED Effects are enabled, the LED ON Time is automatically disabled. When the device goes into
Deep Sleep, ongoing Button Touch LED Effects are immediately disabled.

Figure 3-17. Button Touch LED Effects
[5]

Button

Button
Touched

Button
Released

Intensity with
Breathing effect

enabled
Repeats for N times as specified by Repeat Rate

High
Brightness

Ra
m

p
U

p

Ram
p D

ow
n

Low Brightness

TRU TH TRD TL

Intensity with
Breathing effect

disabled
Repeats for N times as specified by Repeat Rate

High Brightness

Ra
m

p
U

p

Ram
p D

ow
n

Low Brightness

TRU TH TRD TL

High Hold
Time

5
 TRU = Ramp Up Time

TRD = Ramp Down Time
TH = High-Brightness
TL = Low-Brightness

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 26

Figure 3-18. Button Touch LED Effects with Toggle ON/OFF Enabled

Button

Button
Touched

Button
Released

Intensity

High Brightness

Ra
m

p
U

p
Ram

p D
ow

n

TRU TRD

Standby Mode
LED Brightness

Button
Touched

Button
Released

Standby Mode
LED Brightness

3.2.7.3 Last Button LED Effect

You can configure Button Touch LED Effects to be interrupted on one GPO if any other button in touched. The effects
reset on the first GPO and start on the GPO associated with the last button touched as shown in Figure 3-19. This
feature is disabled by default.

If Toggle ON/OFF is also enabled for some buttons, the Last Button LED Effect is disabled for those buttons. If
Flanking Sensor Suppression (FSS) is enabled, and two buttons are touched simultaneously, Last Button LED Effect
does not apply, as the second button touched does not turn ON.

Figure 3-19. Button Touch LED Effects (Breathing Enabled) with Last Button LED Effect Enabled

CS1

GPO0 LED
Brightness

High
Brightness

R
am

p
U

p

R
am

p D
ow

n

Low Brightness

TRU TH TRD TL

GPO1 LED
Brightness

CS0

CS0
Touched

CS1
Touched

Repeats for N times as
specified by Repeat Rate

High
Brightness

R
am

p
U

p

R
am

p D
ow

n

Low Brightness

TRU TH TRD TL

CS1
Released

CS0
Released

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 27

3.2.7.4 Standby Mode LED Brightness

When the CapSense button CSx is OFF, you can configure the LED associated with the corresponding GPOx to
have a Standby Mode LED Brightness for LED backlighting. This configuration improves the look-and-feel of the
design.

Standby Mode LED Brightness can be configured to be 0%, 20%, 30%, or 50%. Standby Mode LED Brightness
should be the same as low-brightness.

The LEDs associated with GPOx remain on Standby Mode LED Brightness after the conclusion of Power-On LED
Effects or Button Touch LED Effects, when the CSx is OFF.

Standby Mode LED Brightness increases the power consumption of the device because the device does not go into
Low-Power Sleep mode. When the device goes into Deep Sleep mode, Standby Mode LED Brightness is disabled.

3.2.8 Latch Status Read
When a CapSense button CSx is touched, the device generates an interrupt to the host by pulling the Attention/Sleep
line low. Then, the host processor can read the device Register Map through I

2
C communication to learn the

CapSense button status. To learn more refer to Attention/Sleep. To learn more about I
2
C communication, refer to the

CY8CMBR2110 Datasheet.

When the device interrupts the host, the host may not be able to service the interrupt immediately. As a result, the
host could miss the button touch. To avoid missing any button touches, the host needs to read both the button status
(CS) and the latch status (LS) for the proper information about any button touch. CS is stored in
Button_Current_Stat0 and Button_Current_Stat1 registers in Operating Mode. LS is stored in Button_Latch_Stat0
and Button_Latch_Stat1 registers in Operating Mode. For register map details, refer to the CY8CMBR2110
Datasheet Appendix.

The Button Status bit is set on a button touch and cleared on button release. The Latch Status bit is set on a button
touch. This bit is automatically cleared when the host reads the Button status.

Table 3-3 lists the various cases for a button touch and its acknowledgment. These cases are shown in Figure 3-20
and Figure 3-21.

Table 3-3. Latch Status Read

Button Status
(CS)

Latch Status
(LS)

Interpretation

0 0 CSx is not touched during the current I
2
C read

Host has already acknowledged any previous CSx touch in the last I
2
C read

0 1 CSx was touched before the current I
2
C read

This CSx touch was missed by the host

1 0 CSx was touched and acknowledged by the host during the previous I
2
C read

This CSx is still touched during current I
2
C read

1 1 CSx is touched during the current I
2
C read

Figure 3-20. Latch Status Read Case 1

CS = 0
LS = 1

Button
Status

I2C Read I2C Read

Latch
Status

CS = 0
LS = 0

http://www.cypress.com/?rID=66754
http://www.cypress.com/?rID=66754
http://www.cypress.com/?rID=66754

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 28

Figure 3-21. Latch Status Read Case 2

CS = 0
LS = 0

Button
Status

I2C Read I2C Read

Latch
Status

I2C Read

CS = 1
LS = 1

CS = 1
LS = 0

3.2.9 Analog Voltage Support
A general external resistive network with a host processor, such as the one shown in Figure 3-22, can configure the
host to perform different functions based on the voltage level seen at the input pin. You can vary this voltage level
using a combination of resistors and switches between VDD and ground.

Figure 3-22. A General External Resistive Network

Host Processor

VDD

VDD

R1

R2R3R4

R7 R6R8

R5

Key 1

Key 2

The analog voltage support feature of CY8CMBR2110 gives you the option to control these switches using
CapSense buttons. Each switch can be replaced with one GPOx. When a CSx button is touched, the corresponding
GPOx goes low; therefore, the switch is closed (shorted to ground). When the button is released, the corresponding
switch is left open. This is shown in Figure 3-23.

If this feature is enabled, the GPOs cannot be used simultaneously in the external resistive network and for the LED
drive. If only one button needs to be ON for analog voltage support, enable FSS with this feature. Usually, the GPO
pins are in strong drive mode, however, when this feature is enabled, the GPOs are in Open Drain Low drive mode.

Figure 3-23. Analog Voltage Support from CY8CMBR2110

Host Processor

VDD

VDD

R1

R2R3R4

R7 R6R8

R5

Key 1

Key 2

GPO2 GPO1GPO3GPO4

GPO6 GPO5GPO7GPO8

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 29

3.2.10 Sensitivity Control
The sensitivity of each CapSense button can be set individually. Sensitivity determines the minimum CF required to
turn ON a button. The following factors affect the button’s sensitivity:

1. Overlay thickness: The thicker the overlay, the higher the sensitivity requirement.

2. System noise: As system noise increases, sensitivity needs to be lower, to avoid false button triggers.

3. Form factor of the design: A relatively large button size is required to support a low sensitivity (Higher CF).
For small-button diameters, the sensitivity needs to be high.

4. Power Consumption: Power consumption increases for high sensitivity buttons. For low power consumption
needs, the sensitivity needs to be low.

The different sensitivity settings available are “High”, “Medium”, and “Low”.

3.2.11 Debounce Control
The Debounce feature avoids false button triggering from noise spikes or system glitches, by specifying the minimum
time a button has to be touched for a valid touch input.

The debounce time can vary depending on the button’s function. For example, the power button should have a long
debounce time to avoid inadvertently switching the system ON/OFF. Shorter debounce times speed up the device’s
response to a button touch.

The debounce value for the CS0 button can be set separately from the CS1—CS9 buttons. This functionality is useful
in designs where the CS0 button has a special function such as the power button. The debounce can range from 1—
255.

The device’s Response Time depends on the button debounce. Table 3-4 lists some examples of device Response
Time for different debounce values

6
.To calculate the Response Time for any debounce value, refer to Response

Time.

Table 3-4. Example Response Times for Debounce Values

Debounce Value
Response Time for Consecutive

Button Touch (ms)

1 70

4 105

7 140

10 175

100 1225

200 2380

255 3010

3.2.12 System Diagnostics
A built-in power-on self-test (POST) mechanism performs five tests at power-on reset (POR), which can be useful in
production testing. If any button fails, a 5-ms pulse is sent out on the corresponding GPO within 350 ms if Noise
Immunity is “Normal” and 1000 ms if Noise Immunity is “High”.

6
 8-buttons, Noise Immunity level "Normal", Response Time optimized design

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 30

Figure 3-24. Example Showing CS0, CS1 Passing the POST and CS2, CS3 Failing

5ms pulse

GPO3

GPO2

GPO1
(High)

GPO0
(High)

5ms pulse

To find out the result of the System Diagnostics, use the EZ-Click Customizer Tool. To learn more about the tool,
refer to the EZ-Click Customizer Tool User Guide.

If you need to read the entire device’s data, you can change the device’s Register Map mode to “Production Line
Test” mode and read the data through the I

2
C lines. To learn more about changing Register Map modes, refer to the

CY8CMBR2110 Datasheet Register Map Modes. To learn more about device data, refer to I2C Communication.

Because you can read the GPOs’ status using I
2
C, you do not need to create an interface between the GPOs and the

host controller pins.

The following tests are performed on all of the buttons.

3.2.12.1 Button Shorted to Ground

If any button is found to be shorted to ground, it is disabled.

Figure 3-25. Button Shorted to Ground

CY8CMBR2110

Button

shorting

3.2.12.2 Button Shorted to VDD

If any button is found to be shorted to VDD, it is disabled.

Figure 3-26. Button Shorted to VDD

CY8CMBR2110
Button

shorting

VDD

http://www.cypress.com/?rID=58815
http://www.cypress.com/?rID=58815
http://www.cypress.com/?rID=66754

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 31

3.2.12.3 Button-to-Button Short

If two or more buttons are found to be shorted to each other, all of these buttons are disabled.

Figure 3-27. Button-to-Button Short

CY8CMBR2110

Button

shorting

Button

3.2.12.4 Improper Value of CMOD

Recommended value of CMOD is 2.2 nF, ±10%.

If the value of CMOD is found to be less than 1 nF or greater than 4 nF, all of the buttons are disabled.

3.2.12.5 Button CP > 40 pF

If any button’s CP is greater than 40 pF, that button is disabled.

3.2.13 Button Scan Rate
The button scan rate specifies the time between successive button scans by the device. Use the following equation to
calculate the rate:

Button Scan Rate = Button Scan Rate constant + Button Scan Rate offset Equation 4

The Button Scan Rate is configurable from 25—561 ms.

The Button Scan Rate constant depends on the number of buttons and the Noise Immunity level selected. For a
higher number of buttons, the constant is higher. Similarly, for “High” Noise Immunity, the constant is higher.

If you use a maximum of five buttons, the Button Scan Rate constant depends on how you optimize your design:

Response Time Optimization: The time between consecutive button scans is shorter. As more scans occur in a
fixed time, the device responds more quickly to a button touch. However, power consumption increases.

Power Consumption Optimization: The time between consecutive button scans is longer. As fewer scans occur in
a fixed time, the device takes longer to respond to a button touch. As a result, power consumption decreases.

You can configure the Button Scan Rate offset using the EZ-Click Customizer Tool. The Button Scan Rate constant is
given in Table 3-5.

Table 3-5. Button Scan Rate Constant

Button Count

Button Scan Rate Constant

Response Time-Optimization Power Consumption Optimization

Noise Immunity
“Normal”

Noise Immunity
“High”

Noise Immunity
“Normal”

Noise Immunity
“High”

≤ 5 25 35 35 55

> 5 35 55 35 55

As an example, consider a design with four buttons and the following parameters:

 CP between 10—20 pF for all buttons

 Sensitivity is high for all buttons

 Noise Immunity is “Normal”

 Debounce for each button is set to 10

http://www.cypress.com/?rID=58815

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 32

 Average button touches per hour = 200

 Average touch time = 1000 ms

 Buzzer and Button Touch LED Effects are disabled

 Button Scan Rate offset = 0.

 The current consumption per button is:

 Response Time Optimized = 0.3075 mA

 Power Consumption Optimized = 0.2204 mA

The response times for first button touch as well as consecutive button touches are:

 Response Time Optimized = 125 ms

 Power Consumption Optimized = 175 ms

Note that the response time optimized design consumes a lot more power and responds more quickly to a button
touch when compared to the power consumption optimized design. To find the response time for your design, refer to

the Design Toolbox.

Button scan rate varies from device to device, and it is ±10% accurate at a temperature range of -40 °C to +85 °C.

3.2.14 I2C Communication
I
2
C is the interface used to communicate between the CY8CMBR2110 (I

2
C slave) and the host (I

2
C master).

To learn more about the protocol and the communication procedure, refer to the CY8CMBR2110 Datasheet I
2
C

Communication section.

For proper I
2
C communication between the host and the device, follow these guidelines:

 The host processor should pull the Attention/Sleep line low before initiating any I
2
C communication or the device

might NACK the host.

 The host processor should not initiate or continue an I
2
C communication with the device unless:

 The host needs to configure the device.

 The device interrupts the host.

 The host needs to read and verify the device register map contents.

 To reduce power consumption, avoid prolonged I
2
C communication with the device.

 The host should wait for 350 ms if Noise Immunity is “Normal” or 1000 ms if Noise Immunity is “High” after device
power-on before initiating any I

2
C communication. Otherwise, the device NACKs any such communication.

 The host should wait for a minimum of 60 ms after any I
2
C transaction before initiating a new transaction.

 The host should wait for 350 ms if Noise Immunity is “Normal” or 1000 ms if Noise Immunity is “High” after “Save
to Flash” or “Software reset” commands are issued before initiating any I

2
C communication.

 The device should be in Operating Mode in runtime.

 The host should not initiate a new START condition for the device without initiating a STOP condition for the
previous I

2
C communication. This is also called Repeat Start condition.

 The host should maintain a minimum of 60 ms between consecutive I
2
C transactions.

 If the host initiates another I
2
C transaction before this time, it will receive the same data as in the previous

transaction.

 If the host writes to the same register as the one in the previous transaction within this time, the old data is
lost.

 If the host writes to a different register than the one in the previous transaction within this time, the register
keeps this data. The data from the previous transaction is not lost.

http://www.cypress.com/?rID=66758
http://www.cypress.com/?rID=66754

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 33

3.3 Design Toolbox

The Design Toolbox helps you to design a CY8CMBR2110 CapSense solution. It offers basic information about the
board layout and feature settings and recommends whether the design is fit for mass production.

3.3.1 General Layout Guidelines
Figure 3-28 summarizes the layout guidelines for the CY8CMBR2110. These guidelines are discussed in Electrical
and Mechanical Design Considerations. For a thorough treatment of this material, see Getting Started with
CapSense.

Figure 3-28. Design Layout Recommendations

3.3.2 Layout Estimator
The Layout Estimator provides the minimum button size and maximum trace length recommendation based on the
intended end-system requirements and industrial design. The inputs include the overlay material, overlay thickness,
trace capacitance of circuit board material, and CapSense button sensitivity. See Figure 3-29, Table B, to learn the
dielectric constants for different overlay materials and the trace capacitance per unit length for different PCBs. Table
A calculates the minimum button diameter and maximum trace length for the design, based on three system noise
conditions. “Low”, “Medium”, and “High” noise conditions are relative figures of merit to help you with button
development. Noise conditions can vary from button to button based on the end-system environment. If the noise
conditions are unknown, use medium as the starting point. The actual noise seen at each button will be determined
during Design Validation .

http://www.cypress.com/?rID=66758
http://www.cypress.com/?rID=48787
http://www.cypress.com/?rID=48787

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 34

Use the outputs of this sheet to guide the button board layout process, and then check the design prior to prototyping
with the CP, Power Consumption and Response Time Calculator sheet, as detailed in CP, Power Consumption and
Response Time Calculator.

Figure 3-29. Layout Estimator

Inputs

 Overlay thickness

 Overlay dielectric constant

 Capacitance of trace per inch of board

 CSx sensitivity

Outputs

 Recommended minimum button diameter and maximum trace length for different noise conditions

 Button-to-ground clearance

The diameter of each button can vary based on the variation in noise in each button.

3.3.3 CP, Power Consumption and Response Time Calculator
After the board layout has been completed, the Power Consumption and Response Time Calculator shown in
Figure 3-30 checks the design before building the button board prototype. To verify the CP value of each button,
insert the button diameters and trace lengths into Table A. After you enter the information, the toolbox confirms
whether each button is within the specified CP range of 5—40 pF.

The power calculator in Table B is used to optimize power consumption. Power consumption is a function of the
button scan rate, noise immunity level, and the percentage of active time. Active time is calculated by multiplying the
average number of button touches per hour by the maximum of the following three values: Button touch time, Buzzer
ON time or Button Touch LED Effects. This is converted into the percentage of active time, and the power
consumption is calculated accordingly. Ensure that you do not keep all the following input cells empty (or zero) at the
same time:

1. Average number of button touches per hour

2. Average button touch time

3. Average Buzzer ON time

4. Average Button Touch LED Effects time

Table C outputs the button response time based on the inputs in Tables A and B. The debounce value affects the
button response time.

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 35

Figure 3-30. CP, Power Consumption and Response Time Calculator

Inputs

 Button diameter and trace length of CS0—CS9 as designed in layout

 Sensitivity of CS0—CS9

 Button Scan Rate offset

 Design optimization

 Noise immunity level

 CS0 Debounce

 CS1—CS9 Debounce

 Average number of button touch per hour

 Average button touch time

 Average Buzzer ON time

 Average Button Touch LED Effects time

 Standby Mode LED Brightness

 Current consumption calculation factor

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 36

Outputs

 CP for each button (confirms whether the CP values are within the specified range of 5—40 pF)

 Current consumption per button

 Button response time

3.3.4 Design Validation
After you have built and tested the prototype board, use the EZ-Click Customizer Tool to capture the raw count, noise
count, and CP for all buttons (See EZ-Click User Guide). You can use this information and the design validation sheet
to validate the design, as detailed in Design Validation .

Table A shows the various design parameter values, taken from the previous sheets, so you do not need to enter any
data in this sheet. This sheet provides a pass/fail grade for the prototype board. If your design fails, you can redesign
your system by entering new values in Table A, and you will receive further recommendations and results. If your
design passes, leave blank the “New value” column in Table A.

Table B shows the button sensitivity values, taken from the CP, Power Consumption and Response Time Calculator
Sheet. If your design fails, you can redesign your button sensitivity by entering the new values. If your design passes,
you can leave blank the “New value” column in Table B.

Figure 3-31. Design Validation

To use the EZ-Click Customizer Tool to enter data into Table D, follow these steps:

1. Power-on the device and connect it to your computer using the USB-I
2
C Bridge (CY3240-I2USB Bridge). Refer

to AN2397 – CapSense Data Viewing Tools for (USB-I
2
C Bridge) (CY3240-I2USB Bridge) details.

http://www.cypress.com/?rID=58815
http://www.cypress.com/?rID=58815
http://www.cypress.com/?rID=58815
http://www.cypress.com/?rID=2784

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 37

2. Open the EZ-Click Customizer Tool and create a new project. Select Cypress device CY8CMBR2110. Select the
port you are using from the Port selection window and click Connect.

3. Go to Device Config tab and select the number of buttons in your design. Assign the CapSense pins to the
corresponding buttons if required. Set the finger threshold or select Automatic Threshold.

4. Go to CapSense output tab and select Button Specific Output view.
5. Select the button whose CapSense output you want to see. Select the “Raw Count vs Baseline” graph.
6. Observe the raw count graph and note the average Raw Counts for 300 samples. Also note the Button CP.
7. Calculate Noise Counts based on the following equation:

Noise Counts = Maximum Raw Counts - Minimum Raw Counts (for 300 samples)
8. Enter this data in Table D to find the current consumption values and determine if your design is ready for mass

production.

Inputs
 Raw Counts

 Noise Counts

 Button CP

 If the design fails, note the following:

 New overlay thickness, overlay material permittivity, button diameter for each individual button, and trace
capacitance

 CSx sensitivity

Outputs

 Current consumption per button

 Design change recommendations. The Design Toolbox makes recommendations based on the actual values
from the design if the button size or trace lengths are outside of best design practices.

If the button board does not pass, the Design Toolbox will offer recommendations to guide you to a passing outcome.
You can change four areas to remedy a failing design: button size, trace length, overlay material, and overlay
thickness. Changing the button size or trace length requires a board spin, while changing the overlay material,
thickness, or both, may result in a passing design. The best solution depends on where your design is in the
development cycle as well as your end-system requirements.

3.4 Configuring the CY8CMBR2110

CY8CMBR2110 can be configured using one of the following methods:

1. EZ-Click Customizer Tool

2. Configuring the Device using a Host Processor

3. Third-party Programmer

The general procedure to configure the CY8CMBR2110 device is listed in steps. These procedures are common for
all the configuration methods. The EZ-Click Customizer Tool takes care of this procedure automatically but the host
processor must follow these procedures:

1. Change the device mode to LED Configuration mode.

2. Wait 55 ms.

3. Write to all of the configuration registers in the LED Configuration mode.

4. Wait 55 ms.

5. Change the device mode to Device Configuration mode.

6. Wait 55 ms.

7. Write to all of the configuration registers in the Device Configuration mode.

8. Calculate the checksum and enter it in the “Checksum_MSB” (0x1E) and “Checksum_LSB” (0x1F) registers (in
the Device Configuration mode).

http://www.cypress.com/?rID=58815

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 38

Checksum: The checksum is the sum of the values of the registers (0x01—0x1F) in the LED Configuration
mode and the registers (0x01—0x1D) in the Device Configuration mode. The checksum also includes the
values of any reserved register bits. The host should not write to these bits and should add 0 for any such
bit, when calculating the checksum.

Checksum_Flash_xxx registers (in Operating mode) indicate the checksum stored in the flash.

Checksum_RAM_xxx registers (in Operating mode) indicate the checksum calculated by the device for the
current configuration and stored in the RAM.

9. Wait 55 ms.

10. Read the “Checksum matched” bit in the Host_Mode register (in Device Configuration mode), and verify that it is
set to 1. If this bit is not set, restart at step one and reconfigure the device. The host should keep a backup of the
configuration data if this is needed.

“Checksum matched” bit: The CY8CMBR2110 calculates the checksum and compares that with the
Checksum register value entered by the host. If both the values match, the “Checksum matched” bit in the
Host_Mode register is set to 1. If the values do not match, it indicates a possible I

2
C write error, and this bit

is cleared to 0. The host can read the Checksum_RAM_xxx register (in Operating mode) to get the device
calculated checksum.

11. If the “Checksum matched” bit is set to 1, then set the “Save to Flash” bit in the Host_mode register.

Save to Flash: On a “save to flash”, the following sequence is executed:

(i) The device copies the 64-byte data (in LED Configuration mode and Device Configuration
mode) to the flash.

(ii) A software reset is done.

(iii) After the software reset, the device mode is Operating mode.

Any configuration changes are not applicable unless you save to flash. A “save to flash” is useful when the
device has to be configured only once for all future operations. During a save to flash, the device’s power
supply must be stable, with VDD fluctuations limited to ±5%.

12. After a “save to flash”, wait for (TSAVE_FLASH + Device initialization) time. TSAVE_FLASH is mentioned in the Flash
Write Time Specifications in the CY8CMBR2110 Datasheet. The device initialization time is 350 ms if the Noise
Immunity is “Normal” or 1000 ms if the Noise Immunity is “High”.

13. Read the “Factory defaults loaded” bit in Device_Stat register (in Operating mode).

Factory Defaults Loaded: On every reset, the device loads the RAM with the flash content and verifies the
RAM checksum with the flash checksum to ensure there is no flash corruption. If the checksum differs, then
the device identifies it as a flash corruption, loads the factory defaults value in the RAM, and sets the
“Factory defaults loaded” bit. This resets any register values previously changed by the host. Factory default
values for each register are given in the Register Map.

If the factory defaults are loaded, the I
2
C address of the device also changes from the current address, set

by the host, to the default address, 37h. The host must use the default I
2
C address on the I

2
C bus to

communicate with the CY8CMBR2110 after factory defaults are loaded.

14. If the “Factory defaults loaded” bit is set, then the flash is corrupted, and the host needs to reconfigure the device
from step one. If this bit is clear, device configuration is successful.

Note The details of different modes and registers referred to in these steps are available in the CY8CMBR2110
Datasheet.

3.4.1 EZ-Click Customizer Tool
The EZ-Click Customizer Tool is a simple and intuitive graphical user interface used to configure the device. It takes
all the required parameters and configures the device using an I

2
C interface.

http://www.cypress.com/?rID=66754
http://www.cypress.com/?rID=66754
http://www.cypress.com/?rID=66754
http://www.cypress.com/?rID=58815

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 39

Figure 3-32: EZ-Click Customizer Tool

The EZ-Click Customizer Tool displays real-time CapSense data from the device. You can see both button-specific
and parameter-specific data, including CapSense button status, CP, Raw Counts, Finger threshold, and SNR. The
tool can be used for production line testing because it displays System Diagnostics results and CapSense button
SNR, and indicates whether the SNR meets your requirements. For more information on this tool, refer to the EZ-
Click User Guide.

You can save the configuration and use it on a different sample. You can also use the tool to generate a configuration
file, including the required I

2
C instructions, and use it to configure the device. To do this, open the configuration file in

Bridge Control Panel (refer to AN2397 - CapSense Data Viewing Tools to learn more about Bridge Control Panel)
and send the commands to the device over the USB-I

2
C Bridge (CY3240-I2USB Bridge). Figure 3-33 shows an

example configuration file.

http://www.cypress.com/?rID=58815
http://www.cypress.com/?rID=58815
http://www.cypress.com/?rID=58815
http://www.cypress.com/?rID=2784

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 40

Figure 3-33. Example Configuration File Generated by the EZ-Click Customizer Tool

3.4.2 Configuring the Device using a Host Processor

To configure the CY8CMBR2110 device using a Host processor, there is a comprehensive list of APIs and these
APIs are to be called from the Host processor in a specific order. These APIs use I

2
C communication to configure the

device features, read CapSense data, drive host control GPOs, perform production line tests, configure power
consumption settings, and so on. You can download the source code from http://www.cypress.com/?rID=74590.

The advantages of using a Host processor to configure the CY8CMBR2110 device are as follows:

 In-system configuration - no need to take the device (chip) out of the board

 Run time configuration - modifying the features dynamically by a host processor

The APIs are primarily divided as high-level APIs and low-level APIs. High-level APIs are hardware (platform)
independent and work on any host processor. The low-level APIs are developed for the CY8C29466-24PXI device,
and it is hardware (platform) dependent. If you have a different host processor in your application, you need to modify
the low-level API firmware.

3.4.2.1 High-Level APIs

High-level APIs can be used to enable or disable Button Touch LED Brightness, set Finger Threshold parameters,
configure scan rate, change I

2
C address, and many other functions.

High-level APIs contain code to read or write the appropriate register of the CY8CMBR2110 and calculate the
checksum of the configurations. They call low-level APIs that are host processor specific and implement the physical
I
2
C communication between the host processor and the device.

The high-level API header file (High_Level_API.h) contains function prototypes for all of the high-level APIs. This
header file needs to be included in the required .C file when configuring the CY8CMBR2110 device. High-level APIs
use the macros defined in High_Level_API.h for internal configuration. You must not change the macros.

For example:

#define I2C_CFG_REG (0x01)

http://www.cypress.com/?rID=74590

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 41

3.4.2.2 Low-Level APIs

Low-level APIs are used in the host processor to enable physical I
2
C communication with the device. The low-level

APIs provided here use the PSoC I2CHW User Module to perform read and write operations. You may need to
modify the low-level API code depending on how you implement I

2
C protocol.

The low-level API header file (Low_Level_API.h) contains function prototypes for the low-level APIs and macros used
by the low-level APIs. The macros are mainly used for I

2
C communication and the software delay routine. These

macros are defined for the CY8C29466-24PXI device. You need to change the definitions to work with your host I
2
C

implementation.

For example, if the CY8CMBR2110 device NACKs, the I2CHW User Module in CY8C29466-24PXI (PSoC1) returns
0x00. Therefore, the macro I2C_NACK is defined as 0x00. If you are using a different host processor that returns a
different value when it NACKs, you need to modify I2C_NACK to match.

The software delay API is required to provide a delay equal to the Button Scan Rate. This delay is required after
every write instruction. If you wish to implement this delay using a hardware resource (timer), you can disable the
software delay routine by clearing the corresponding macro as described in Table 3-7.

Macros that do not depend on the host controller are listed in Table 3-6. Macros that you may need to change based
on the host controller you are using are listed in Table 3-7.

Table 3-6: Macros Not Dependent on the Host Controller

Macro Name Usage

FLASH_WRITE_TIME The amount of time it takes the CY8CMBR2110 device to properly save the data after a
save to flash command is issued

TOTAL_BUTTON_COUNT The maximum number of buttons in the CY8CMBR2110 device

FACTORY_DEFAULT_CHECKSUM The factory default checksum of the CY8CMBR2110 device

DEFAULT_SLAVE_ADDRESS The factory default I
2
C address of the CY8CMBR2110 device

DELAY_CONST Used to calculate number of iterations required for the software delay

SLAVE_NACK Used to clear the I
2
C flag, when the CY8CMBR2110 device NACKs

SLAVE_ACK Used to set the I
2
C flag, when the CY8CMBR2110 device ACKs

SLAVE_BUF_PTR Used to set the host I
2
C buffer pointer to the specific register address on the register map

Table 3-7: Macros Dependent on the Host Controller

Macro Name Usage

I2C_WRITE_COMPLETE Checks if the I2C write operation to the CY8CMBR2110 device is complete. The I2CHW
User Module returns 0x50 when the write operation is complete.

NACK_RETRY_LIMIT Defines the number of times the host processor retries when the CY8CMBR2110 device
NACKs. The typical value is 20. You may change this value to work with your application.

DELAY_ROUTINE_USED Used to enable/disable the software delay routine. A value of 1 enables the software
delay, while 0 disables it. If you are using a hardware resource to implement the
delay, you should disable the software delay routine.

Note The software delay routine is a blocking code. It stalls the CPU for a definite time.

I2C_NACK Used to check if the CY8CMBR2110 device NACKed the current I
2
C operation. The

I2CHW User Module returns 0x00 when the write/read operation is NACKed.

I2C_READ_COMPLETE Checks if the I
2
C write operation to the CY8CMBR2110 device is complete. The I2CHW

User Module returns 0x15 when the write operation is complete.

NEW_SLAVE_ADDRESS The value of the new slave address. If the host changes the default slave address of the
CY8CMBR2110 device using the MBR_SetI2CSlaveAddress API, it needs to re-define
this macro with the new slave address.

CLOCK_FREQUENCY The host controller clock frequency in MHz. For the PSoC 1 Host device, the clock
frequency is 24 MHz.

MACHINE_CYCLES The number of machine cycles taken to execute the while loop in the software delay
routine. The value of MACHINE_CYCLES is 97 on building with the ImageCraft compiler
(refer to MBR_Delay).

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 42

3.4.2.3 MBR_WriteBytes

This API initiates an I
2
C write operation between the CY8CMBR2110 device and host processor. The function

prototype is given in Section 7.2.2.

Note For the write operation, there is a buffer defined in the host. The high-level API passes the buffer to the write
API and the buffer is in the form of a BYTE array (refer to Data Types). Upon writing, the first BYTE (byte[0]) holds
the base pointer and rest of the bytes (byte[1], byte[2]…) have the data. Because the base pointer is set to “location
to be written in the register map of CY8CMBR2110”, the write operation begins from that location.

High-level APIs pass the I
2
C buffer pointer and the number of bytes to be written. MBR_WriteBytes does the

following:

1. Initiates an I
2
C write operation to the CY8CMBR2110 device

2. Waits until the transaction ends

3. Checks if the transaction worked properly

4. If the transaction did not work properly, it retries the write operation for up to the value of the macro

NACK_RETRY_LIMIT

3.4.2.4 MBR_ReadBytes

This API initiates an I
2
C read operation between the CY8CMBR2110 device and host processor. The function

prototype is given in section 7.2.2.

Note Upon reading, the host buffer is updated with the required data from the location 0x00 of the device register
map as byte[0] will contain the data in location 0x00, byte [1] will have data in location 0x01,etc.The read operation
always begin from location 0x00 of all the register maps.

High level APIs pass the I
2
C buffer and the number of bytes to be read. MBR_ReadBytes does the following:

1. Gets the I
2
C buffer address and the number of bytes that will be read from the device

2. Sets the slave pointer to the location 0x00

3. Initiates an I
2
C read operation from the CY8CMBR2110 device

4. Waits until the transaction ends

5. Checks if the transaction worked properly

6. If the transaction did not work properly, it retries the read operation for up to the value of the macro

NACK_RETRY_LIMIT

3.4.2.5 MBR_Delay

This API generates a software delay using a while loop that is executed a specified number of times. The function
prototype is given in section 7.2.2. The number of loop iterations can be calculated using the following formula:

 Equation 5

You need to calculate the number of machine cycles (total assembly-level instruction cycles) required to execute the
while loop in the host machine. For a PSoC 1 host using the ImageCraft Pro compiler, the macro
MACHINE_CYCLES is 97. You need to modify this value based on the compiler and host processor you are using.

Note The CPU is completely blocked for the entire delay time.

3.4.2.6 Guidelines to Configure the CY8CMBR2110 Device

 The high-level APIs need to be called in a specific order when configuring the CY8CMBR2110 device.
Figure 3-34 illustrates the correct order.

 Check your I
2
C communication status in the host processor after calling the MBR_Initialization API. This API

should be called before any other API call. For example, when the transaction gets ACK, the variable
“gbI2CFlag” in low-level APIs is set to 1, otherwise it will be set to zero. You can check this variable for
proper transaction. You can also check your own I

2
C registers in your host processor for the indication of

NACK or ACK.

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 43

 Do not switch between register map modes until you have completed configuring all of the features for that
register map mode. For example, do not configure one feature in the LED configuration mode, switch to the
device configuration mode, and then return to configuring features in the LED configuration mode. Switching
between register map modes consumes time. Therefore, configure all the features in the LED configuration
mode and then switch to device configuration.

 Pass the correct arguments to the high-level APIs as defined in the section, APIs for CY8CMBR2110
Configuration.

 Since the high-level APIs themselves calculate the checksum of the configurations, you need not take care
of checksum calculations.

 Host controlled GPOs must be configured after the save to flash because the save to flash command issues
a software reset, which clears the Host controlled GPO configurations.

 LED effects are defined in groups of GPOs (GPO123, GPO456, and GPO789) except for GPO0. The
configuration must match for all of the GPOs in a group. For example, do not pass different LED
configurations to GPO1 and GPO2. After you configure GPO1, the configuration applies to GPO2 and GPO3
because they share a register and if you again configure different LED effects for GPO2, that will be
applicable to GPO1,3.

 When setting the Finger threshold values of the buttons, clear or disable the Automatic Threshold feature
using the MBR_SetAdaptiveThreshold API (see High-Level APIs).

 When using LED effects, enable the effect before configuring the features of that effect. For example, enable
button touch LED effects and then configure all the features corresponding to button touch LED effects.

 The deep sleep API must be called using the procedure in Deep Sleep Mode.

 Do not configure the LED ON time and also enable Toggle ON/OFF. LED ON time will be disabled if Toggle
ON/OFF is enabled.

 Do not configure the LED ON time and also enable Button Touch LED Effects. LED ON time will be disabled
if Button Touch LED Effects is enabled.

 Do not enable Toggle ON/OFF and Last Button LED Effect. The Last Button LED Effect will be disabled if
Toggle ON/OFF is enabled.

 All of the read APIs such as System Diagnostics, Sensor Current Status, Sensor Latch Status, Sensor SNR,
and Debug Data can be called directly without saving to flash.

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 44

Figure 3-34: High-Level API Flow Chart

Call MBR_Initialization()

Type of operation

required?

Configure

CY8CMBR2110

System Diagnostics /

Production line debug

Call required APIs for LED Configuration

Call required APIs for Device Configuration

Call MBR_SetChecksum()

Call

MBR_ReadChecksumMatch()

Is checksum

matching?

Yes. I
2
C writes are OK.

Call MBR_SaveSettingsToFlash()

No.

Possible I
2
C

write error

Is Save to Flash

proper?

Save to Flash

not proper

Stop

Yes

Start

Call required APIs to read

CapSense information,

Device ID, firmware

revision

Read information from

CY8CMBR2110

Stop

Call required APIs to read

System Diagnostics /

debug data

Stop

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 45

3.4.2.7 Input Header

Inputs.h includes macro definitions for high-level API inputs. Use these macros when passing arguments to high-level
APIs. For example, pass the FEATURE_ENABLE macro as an argument when you enable a feature. Some high-
level APIs do not have macros for their input. For example, the MBR_SetScanRate() API does not have any macro
definition for the input, you need to pass the decimal value of 0 to 31 as the input to the function parameter. Refer to

the function prototype of every high-level API in the section, APIs for CY8CMBR2110 Configuration, before passing

the parameters. You should not change these macro definitions. These macros help you to pass proper parameters
to the high-level APIs.

Note The header of every high-level API also lists all of the possible macros that can be passed to it as arguments.

3.4.2.8 Data Types

The amount of memory allocated for each data type depends upon the complier. Data types char, int, and long are
type-defined and used by the high-level APIs to configure the CY8CMBR2110 device. The data types are as follows:

 unsigned char type-defined to BOOL

 unsigned char type-defined to BYTE

 unsigned int type-defined to WORD

 unsigned long type-defined to DWORD

 signed char type-defined to CHAR

 signed int type-defined to INT

 signed long type-defined to LONG

These values are based on the assumption that char, int, and long data types take 8, 16, and 32 bits of memory
respectively. If these assumptions are not valid for your host complier, modify the type-definitions in Low_Level_API.h
and High_Level_API.h.

3.4.2.9 Sample Project

The sample project is created to configure the CY8CMBR2110 device using CY8C29466-24PXI (PSoC) as the host
device, which can be downloaded from http://www.cypress.com/?rID=74590. This code is implemented with PSoC
Designer 5.2 and ImageCraft compiler in CY3210-PSoC-EVAL-kit. The sample code configures the following
features:

1. Reads the number of working sensors (number of valid sensors passed the system diagnostics)

2. Enables concurrent power-on LED effects for all the GPOs with 600 ms of ramp-up, ramp-down time

3. Enables a high time of 600 ms with 80% brightness level for GPO0, GPO123, 20% brightness level for
GPO456, and 100% for GPO789 on Power-On LED Effects

4. Sets the repeat rate equal to one for the GPO0 on Power-On LED Effect

5. Configures AC-1 pin Buzzer in LOW idle state with 4-KHz buzzer frequency and 200 ms of buzzer duration

6. Sets the debounce value to 100 (response time for consecutive button touches to 1225 ms) for the CS0
button

7. Sets sensitivity value of 2 (Medium) for the CS0 button

8. Enables toggle feature for button CS0 button

9. Enables the FSS feature for all the buttons

10. Writes the checksum calculated by the host to CY8CMBR2110 device

11. Verifies the checksum match condition

12. Save the configurations to the Flash if the checksum match condition is true

13. Sets the HGPO1 state to HIGH

Note HGPO1 is configured to be HIGH after save to flash is complete. On the next reset, HGPO1 is cleared to
LOW. If you need to see the Power-On LED Effects, you must give a hardware reset to the device, which clears
the HGPO1.

http://www.cypress.com/?rID=74590

 CapSense Schematic Design

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 46

3.4.3 Third-party Programmer
To configure the large number of devices, Cypress recommends a third-party vendor to perform automated
programming on the devices. For this, you must give the hex file of your configuration, generated by EZ-Click
Customizer Tool, to Hilo systems (a third-party programmer).

Contact http://www.hilosystems.com.tw/en/index.aspx for further information.

3.5 CY8CMBR2110 Reset

The CY8CMBR2110 can be reset using hardware or software.

3.5.1 Hardware Reset
On a hardware reset, the LED Configuration mode and Device Configuration mode register values are loaded from
the flash into the RAM. All of the device blocks are initialized, System Diagnostics are performed, and an initial 5 ms
pulse is sent out on any GPOx associated with a failing CSx. This is done within 350 ms if Noise Immunity is “Normal”
or 1000 ms if Noise Immunity is “High”. If Power-On LED Effects are enabled, they are then seen on all the remaining
GPOs. After the LED Effects, the device is in Operating mode, and normal operation begins.

Hardware reset is done by toggling power on the CY8CMBR2110 pins using the power supply or XRES.

3.5.1.1 Power Reset

For a power reset, turn off the external power supply to the device’s VDD line, ensuring that VDD drops below 100 mV,
and then turn power back on. On a power reset, a high-going pulse of 16 ms is seen on the HostControlGPO1 pin.

3.5.1.2 XRES Reset

For a XRES reset, pull the device’s XRES pin HIGH and then LOW. On a XRES reset, a pulse is not seen on
HostControlGPO1 pin.

3.5.2 Software Reset
Software reset is done by writing a 1 to the “Software Reset” bit in the Host_Mode register (in Operating mode). On a
software reset, the LED Configuration mode and Device Configuration mode register values are loaded from the flash
into the RAM. The device auto-clears the “Software Reset” bit, and all of the device blocks are initialized. This is done
within 350 ms if Noise Immunity is “Normal” or 1000 ms if Noise Immunity is “High”. The device is in Operating mode,
and normal operation begins. No System Diagnostics are performed, and Power-On LED Effects do not occur. If the
user has configured the device for Power-On LED Effects and saved the settings to flash, a hardware reset must be
done to see the Power-On LED Effects.

http://www.cypress.com/?rID=58815
http://www.cypress.com/?rID=58815
http://www.hilosystems.com.tw/en/index.aspx

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 47

4. Electrical and Mechanical Design
Considerations

When designing a capacitive touch sense technology into your application, it is crucial to remember that the
CapSense device exists within a larger framework. Careful attention to every detail, including PCB layout, user
interface, and end-user operating environment, leads to robust and reliable system performance. For in-depth
information, refer to Getting Started with CapSense.

4.1 Overlay Selection

In CapSense Schematic Design, Equation 1 describes finger capacitance:

Where:

ε0 = Free space permittivity

εr = Dielectric constant of overlay

A = Area of finger and button pad overlap

D = Overlay thickness

To increase the CapSense signal strength, choose an overlay material with a higher dielectric constant, decrease the
overlay thickness, and increase the button diameter. The Design Toolbox helps you design a robust and reliable
CY8CMBR2110 solution, as discussed in the chapter CapSense Schematic Design.

Table 4-1. Overlay Material Dielectric Strength

Material Breakdown Voltage (V/mm) Minimum Overlay Thickness at 12 kV (mm)

Air 1200–2800 10

Wood – dry 3900 3

Glass – common 7900 1.5

Glass – Borosilicate (Pyrex
®)

) 13,000 0.9

PMMA Plastic (Plexiglas
®
) 13,000 0.9

ABS 16,000 0.8

Polycarbonate (Lexan
®
) 16,000 0.8

Formica 18,000 0.7

FR-4 28,000 0.4

PET Film – (Mylar
®
) 280,000 0.04

Polymide film – (Kapton
®
) 290,000 0.04

Conductive material cannot be used as an overlay because it interferes with the electric field pattern. Therefore, do
not use paint containing metal particles.

Bonding Overlay to PCB
Because the dielectric constant of air is very low, an air gap between the overlay and the button degrades the
performance of the button. To eliminate the gap, use a nonconductive adhesive to bond the overlay to the CapSense

http://www.cypress.com/?rID=48787

 Electrical and Mechanical Design Considerations

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 48

PCB. A transparent acrylic adhesive film from 3M™ called 200MP is qualified for use in CapSense applications. This
adhesive is dispensed from paper-backed tape rolls (3M product numbers 467MP and 468MP).

4.2 ESD Protection

Robust ESD tolerance is a natural byproduct of thoughtful system design. By considering how the contact discharge
occurs in your end product, particularly in your user interface, you can withstand an 18-kV discharge event without
damaging the CapSense controller.

CapSense controller pins can withstand a direct 12-kV event. In most cases, the overlay material provides sufficient
ESD protection for the controller pins. Table 4-1 lists the thickness of various overlay materials required to protect the
CapSense buttons from a 12-kV discharge, as specified in IEC 61000-4-2. If the overlay material does not provide
sufficient ESD protection, apply countermeasures in the following order: prevent, redirect, clamp.

4.2.1 Prevent
Make sure all paths on the touch surface have a breakdown voltage greater than potential high-voltage contacts. In
addition, design your system to maintain an appropriate distance between the CapSense controller and possible
sources of ESD. If it is not possible to maintain adequate distance, place a protective layer of a high-breakdown-
voltage material between the ESD source and CapSense controller. For example, one layer of 5-mil-thick Kapton

®

tape can withstand 18 kV.

4.2.2 Redirect
If your product is densely packed, you might not be able to prevent the discharge event. In this case, you can protect
the CapSense controller by controlling where the discharge occurs. Place a guard ring on the perimeter of the circuit
board that is connected to chassis ground. As recommended in PCB Layout Guidelines, using a hatched ground
plane around the button or slider can redirect the ESD event away from the button and CapSense controller.

4.2.3 Clamp
Because CapSense buttons are purposefully placed close to the touch surface, it may not be practical to redirect the
discharge path. In this case, consider including series resistors or special-purpose ESD protection devices.

The recommended series resistance value is 560 Ω.

A more effective method is to put special-purpose ESD protection devices on the vulnerable traces. Note that ESD
protection devices for CapSense need to be low in capacitance. Table 4-2 lists devices recommended for use with
CapSense controllers.

Table 4-2. Low-Capacitance ESD Protection Devices Recommended for CapSense

ESD Protection Device Input
Capacitance

Leakage
Current

Contact Discharge
Maximum Limit

Air Discharge
Maximum Limit Manufacturer Part Number

Littelfuse SP723 5 pF 2 nA 8 kV 15 kV

Vishay VBUS05L1-DD1 0.3 pF 0.1 µA ±15 kV ±16 kV

NXP NUP1301 0.75 pF 30 nA 8 kV 15 kV

 Electrical and Mechanical Design Considerations

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 49

4.3 Electromagnetic Compatibility (EMC) Considerations

4.3.1 Radiated Interference
Radiated electrical energy can influence system measurements and the operation of the processor core. The
interference enters the CY8CMBR2110 chip at the PCB level, through CapSense button traces and any other digital
or analog inputs. The layout guidelines for minimizing the effects of RF interference follow:

 Ground plane: provide a ground plane on the PCB.

 Series resistor: place series resistors within 10 mm of the CapSense controller pins.

 The recommended series resistance for CapSense input lines is 560 Ω.

 Trace length: Minimize trace length whenever possible.

 Current loop area: Minimize the return path for current. To reduce the impact of parasitic capacitance, hatched
ground is given within 1 cm of the buttons and traces, instead of solid fill.

 RF source location: Partition systems with noise sources, such as LCD inverters and switched-mode power
supplies (SMPS), to keep the interference separated from CapSense inputs. Shielding the power supply is
another common technique to prevent interference.

4.3.2 Conducted Immunity and Emissions
Noise entering a system through interconnections with other systems is referred to as conducted noise. Examples
include power and communication lines. Because the CapSense controllers are low-power devices, you must avoid
conducted emissions. The following guidelines will help to reduce conducted emission and immunity:

 Use decoupling capacitors recommended in the datasheet.

 Add a bidirectional filter on the input connected to the system power supply. The filter is effective for both
conducted emissions and immunity. A pi-filter can prevent power supply noise from affecting sensitive parts and
prevent the switching noise of the part itself from coupling back onto the power planes.

 If the CapSense controller PCB is connected to the power supply by a cable, minimize the cable length and
consider using a shielded cable.

 To filter out high-frequency noise, place a ferrite bead around power supply or communication lines.

4.4 PCB Layout Guidelines

The Design Toolbox will help you design a robust CY8CMBR2110 CapSense PCB layout, as discussed in the
General Layout Guidelines.

If your design uses the GPOs to sink current to the CapSense controller, and there is a lot of noise in the CapSense
system, use series resistors on all of the GPOs to limit sink current. Sink current limit is determined by the maximum
button CP in your design at 5 V, as show in Table 4-3.

Table 4-3. GPO Sink Current Limit for Low Output Voltage

Button CP Range Sink Current Limit per GPO Sink Current Limit for Device

5 pF ≤ CP ≤ 12 pF 25 mA 120 mA

12 pF ≤ CP ≤ 21 pF 20 mA 20 mA

21 pF ≤ CP ≤ 40 pF 6 mA 6 mA

Detailed PCB layout guidelines are available in Getting Started with CapSense.

http://www.cypress.com/?rID=66758
http://www.cypress.com/?rID=48787

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 50

5. Low-Power Design Considerations

5.1 System Design Recommendations

Cypress’s CY8CMBR2110 is designed to meet the low-power requirements of battery-powered applications.

To minimize power consumption, take these steps:

 Ground all unused CapSense inputs

 Minimize CP using the design guidelines in Getting Started with CapSense

 Reduce supply voltage

 Reduce the sensitivity of CSx buttons, refer to Sensitivity Control

 Configure the design to be power consumption-optimized, refer to Button Scan Rate

 Use "High" noise immunity level only if required, refer to Noise Immunity

 Use a higher Button Scan Rate or Deep Sleep operating mode, refer to Button Scan Rate

5.2 Calculating Average Power

The Design Toolbox automates the power optimization calculations described in this section. The average power
consumed by the CY8CMBR2110 is determined by calculating the parameters below:

 Button scan rate, TR

 Scan time, TS

 Average current in a NO TOUCH state, IAVE_NT

 Average current in a TOUCH state, IAVE_T

 Percentage of active time, P

 Average use current, IAVE_U

 Average current, IAVE

 Average power, PAVE

http://www.cypress.com/?rID=48787
http://www.cypress.com/?rID=66758

 Low-Power Design Considerations

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 51

5.2.1 Button Scan Rate (TR)
You control the button scan rate through the Register Map settings in the CY8CMBR2110. Based on the register
value, an offset is obtained and added to a constant to get the actual button scan rate. The range of the offset value
is 0—506 ms.

 Equation 6

Table 3-5 shows how to determine the Button Scan Rate constant.

5.2.1.1 Response Time

Response time is the minimum time the button CSx should be touched for the device to detect as valid button touch
and produce a signal on GPOx.

Response times are calculated using the following equation:

 Equation 7

If Noise Immunity is “Normal”:

If Noise Immunity is “High”:

Where:

RTCBT = response time for consecutive button touch after first button touch

RTFBT = response time for first button touch

Debounce for CS1—CS9 = 1—255

Debounce for CS0 = 1—255

Rounddown is the greatest integer less than or equal to ((Debounce – 1)/3)

If you need to change your design configuration from "Normal" Noise Immunity to "High" Noise Immunity, reduce the
debounce value to maintain the Response Time.

 Low-Power Design Considerations

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 52

5.2.2 Scan Time (TS)
To calculate approximate scan time, use the following equation:

Equation 8

When Noise Immunity is “Normal”:

When Noise Immunity is “High”:

Where:

KCSX = button sensitivity constant for CSx,

from Table 5-1.

TFW = Firmware execution time, from Table 5-2.

Table 5-1. Button Sensitivity Constant

CSx Sensitivity (pF) CP (pF)
[7]

 Button Sensitivity Constant (K)

High

Button connected to GND 0

5 pF ≤ CP ≤ 10 pF 1

10 pF < CP ≤ 22 pF 2

22 pF < CP ≤ 40 pF 4

Medium

Button connected to GND 0

5 pF ≤ CP ≤ 18 pF 1

18 pF < CP ≤ 38 pF 2

38 pF < CP ≤ 40 pF 4

Low

Button connected to GND 0

5 pF ≤ CP ≤ 12 pF 0.5

12 pF < CP ≤ 26 pF 1

26 pF < CP ≤ 40 pF 2

Table 5-2. Average Current Parameters

Parameter Typical Maximum

TFW 6.00 ms 6.50 ms

TS From Equation 7 +5% from TYP value

TR From Equation 5 +10% from TYP value

ISLEEP 9.52 µA 14.2 µA

IACTIVE 3.4 mA 4.00 mA

7
 CP limits are approximate and can have ±2 pF variation

 Low-Power Design Considerations

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 53

5.2.3 Average Current in NO TOUCH State (IAVE_NT)

 Equation 9

Where:

TR = button scan rate

TS = scan time

ISLEEP = current consumed by CY8CMBR2110 during Low Power Sleep mode, from Table 5-2.

IACTIVE = current consumed by CY8CMBR2110 during active operation, from Table 5-2.

If Standby Mode LED Brightness is enabled:

5.2.4 Average Current in TOUCH State (IAVE_T)

 Equation 10

Where:

TS = Scan time

CBS = Button scan rate constant, from Table 3-5.

ISLEEP = current consumed by CY8CMBR2110 during Low Power Sleep mode, from Table 5-2.

IACTIVE = current consumed by CY8CMBR2110 during active operation, from Table 5-2.

If Standby Mode LED Brightness is enabled:

5.2.5 Percentage of Active Time (P)
When you touch a button, the device’s active time is calculated (in ms) using the number of button touches per hour
and the maximum of the following three values:

1. Average button touch time

2. Average Buzzer ON time

3. Average Button Touch LED Effects time

 Equation 11

The percentage of active time is:

 Equation 12

Using this method to find P assumes that each button touch occurs after any Buzzer Signal Output or Button Touch
LED Effects have finished and no other button is touched. If this is not the case, using this value for P will result in a
higher power consumption calculation than the actual value.

5.2.6 Average Use Current (IAVE_U)

 Equation 13

Where:

P = percentage of active time

IAVG_NT = average current in the NO TOUCH state

 Low-Power Design Considerations

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 54

IAVG_T = average current in the TOUCH state

5.2.7 Average Current (IAVE)

 Equation 14

Where:

TSA = time device is not in deep sleep mode

TDS = time device is in deep sleep mode

5.2.8 Average Power (PAVE)

 Equation 15

Where:

IAVE = average current

VDD = supply voltage

5.2.9 Example Calculation
As an example of how to calculate average power, consider a CapSense user interface with eight well-designed
buttons and the following parameters:

 CP for all eight buttons is between 10—20 pF

 Sensitivity of each button is high

 Design is response time-optimized

 Noise Immunity is “Normal”

 Button scan rate offset is set to 506 ms

 Standby Mode LED Brightness is disabled

 Typical current consumption values measured

The button scan rate constant can be obtained from Table 3-5:

The button scan rate is calculated using Equation 5:

The scan time can be calculated using Equation 7, with the button sensitivity constant obtained from Table 5-1, and
the typical value for firmware execution time from Table 5-2.

The average current in NO TOUCH state is calculated as follows using Equation 8 and the maximum values for ISLEEP
and IACTIVE from Table 5-2.

The average current in TOUCH state is calculated as follows using Equation 9:

To calculate the active time using Equation 10, assume that a button is touched once a minute (60 button touches per
hour). On average, button touch time is 1000 ms, Button Touch LED Effects time is 3000 ms, and there are no buzzer
outputs.

 Low-Power Design Considerations

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 55

The percentage of active time is calculated using Equation 11:

The average current consumption of the design is calculated as follows using Equation 12:

Assuming this design does not utilize deep sleep mode and that it operates at 1.71 V, the average power is
calculated as follows using Equation 14:

5.3 Sleep Modes

Cypress’s CY8CMBR2110 can be configured to operate in either low-power sleep mode or deep sleep mode. These
modes reduce the power consumption of the device.

5.3.1 Low-Power Sleep Mode
The behavior of the CY8CMBR2110 controller in Low-Power Sleep mode is described in Figure 5-1.

Figure 5-1. Low-Power Sleep Mode

Scan all CS inputs using Button
Scan Rate constant

CS inputs remain in
NO TOUCH state
for 15 seconds?

Scan all CS inputs using Button
Scan Rate constant

Any CS input
transitions to

TOUCH state?

Yes

No

No

Yes

 Low-Power Design Considerations

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 56

5.3.2 Deep Sleep Mode
If you use the CY8CMBR2110 in a system with a host processor, the Attention/Sleep line can operate the device in
Deep Sleep mode. For CY8CMBR2110 to go into Deep Sleep mode, follow these steps:

1. Pull the Attention/Sleep line low

2. Set the “Deep Sleep” bit in Host_Mode register (in Operating Mode) to 1

3. Wait for 50 ms

4. Pull the Attention/Sleep pin high

All communication is suspended. In Deep Sleep mode, the device consumes ~0.1-µA. After the device enters Deep
Sleep mode, the Deep Sleep bit is automatically cleared. To wake up, the Attention/Sleep line is pulled low by the
host. After it wakes up, the CY8CMBR2110 goes into active mode. The host processor can then pull the
Attention/Sleep pin high to put the device into Low-Power Sleep mode. After waking up from Deep Sleep mode, the
device takes some time before the button scanning restarts, this period is called re-initialization. During this time, any
button touch is not reported. Re-initialization takes 20 ms if Noise Immunity is "Normal" or 50 ms if Noise Immunity is
"High".

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 57

6. Resources

6.1 Website

Visit Cypress’s CapSense Controllers website to access all of the reference material discussed in this section.

Find a variety of technical resources on the CY8CMBR2110 web page.

6.2 Datasheet

The datasheet for the CapSense CY8CMBR2110 device is available at www.cypress.com.

 CY8CMBR2110

6.3 Design Toolbox

The interactive Design Toolbox will enable you to design a robust and reliable CY8CMBR2110 CapSense solution.

6.4 EZ-Click™ Customizer Tool

The interactive EZ-Click Customizer Tool will help you configure your CY8CMBR2110 CapSense solution.

6.5 Design Support

To ensure the success of your CapSense solutions, Cypress has a variety of design support channels.

 Knowledge-Based Articles –Browse technical articles by product family or search on CapSense topics.

 CapSense Application Notes – Peruse a wide variety of application notes built on information presented in this
document.

 White Papers – Learn about advanced capacitive touch interface topics.

 Cypress Developer Community – Connect with the Cypress technical community and exchange information.

 CapSense Product Selector Guide – See the complete CapSense product line.

 Video Library –Get up to speed quickly with tutorial videos

 Quality & Reliability – Cypress is committed to customer satisfaction. At our Quality website, find reliability and
product qualification reports.

 Technical Support – World-class technical support is available online.

http://www.cypress.com/?id=1575&source=header
http://www.cypress.com/?rID=66754
http://www.cypress.com/
http://www.cypress.com/?rID=66754
http://www.cypress.com/?rID=66758
http://www.cypress.com/?rID=58815
http://www.cypress.com/knowledge-base-search
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=76&id=1575&applicationID=0&l=0
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=115&id=0&applicationID=0&l=0
http://www.cypress.com/?id=2203&source=header
http://www.cypress.com/?rID=46723
http://www.cypress.com/?id=2660
http://www.cypress.com/?id=1090&source=header
https://secure.cypress.com/myaccount/?id=25

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 58

7. Appendix

7.1 Schematic Example

7.1.1 Schematic 1: Ten Buttons with Ten GPOs

 Appendix

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 59

In Schematic 1: Ten Buttons with Ten GPOs, CY8CMBR2110 is configured as follows:

 CS0—CS9 pins: 560 Ω to CapSense buttons

 Ten CapSense buttons (CS0—CS9)

 GPO0—GPO9 pins: LED and 5 kΩ to VDD

 CapSense buttons driving ten LEDs (GPO0—GPO9)

 CMOD pin: 2.2 nF to Ground

 Modulating capacitor

 XRES pin: Floating

 For external reset

 BuzzerOut0 pin: To buzzer

 AC buzzer (1-pin)

 Buzzer second pin to Ground

 BuzzerOut1 pin: LED and 5 kΩ to Ground

 Used as Host Controlled GPO

 HostControlGPO0, HostControlGPO1: LED and 5 kΩ to Ground

 Two Host Controlled GPOs

 I2C_SDA, I2C_SCL pins: 330 Ω to I
2
C Header

 For I
2
C communication

 Attention/Sleep pin: To Host

 For controlling I
2
C communication, power consumption, and device operating mode

 Appendix

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 60

7.1.2 Schematic 2: Eight Buttons with Analog Voltage Output

In Schematic 2: Eight Buttons with Analog Voltage Output, CY8CMBR2110 is configured as follows:

 CS0—CS7 pins: 560 Ω to CapSense buttons; CS8, CS9 pins: Ground

 Eight CapSense buttons (CS0 – CS7)

 CS8 and CS9 buttons not used in design

 GPO0—GPO7 pins: To external resistive network

 Eight GPOs (GPO0 – GPO7) used for Analog Voltage Output

 GPO8 and GPO9 not used in design

 CMOD pin: 2.2 nF to Ground

 Modulating capacitor

 XRES pin: Floating

 For external reset

 BuzzerOut0, BuzzerOut1 pins: To AC Buzzer

 AC 2-pin Buzzer

 HostControlGPO0, HostControlGPO1 pins: LED and 5 kΩ to Ground

 Appendix

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 61

 Two Host Controlled GPOs

 I2C_SDA, I2C_SCL pins: 330 Ω to I
2
C Header

 For I
2
C communication

 Attention/Sleep pin: To Host

 For controlling I
2
C communication, power consumption, and device operating mode

 Appendix

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 62

7.2 APIs for CY8CMBR2110 Configuration

The following table lists 72 high-level APIs and 3 low-level APIs, which will be used at host processor (I
2
C master) to

configure CY8CMBR2110 (I
2
C slave) through I

2
C interface. These high-level APIs are independent of platforms and

can be used on any host processor. The appropriate inputs are defined as macros for many high-level APIs in
inputs.h.

Low-level APIs are platform dependent and used in the host processor to enable physical I
2
C communication with the

device. These low-level APIs are developed for the PSoC 1 host device; therefore, you may need to modify the low-
level API code depending on your host processor. The sample project created using these APIs is explained in
section 3.4.2.9.

7.2.1 High-Level APIs

 Prototype void MBR_Initialization(void);

1

Description
Initializes global variables used by the high-level APIs. You must call this API first before calling any
other API.

Parameters None

Return None

Example MBR_Initialization();

2

Prototype void MBR_SetCustomData(BYTE bCustomData);

Description
Writes the data given by the user to the custom data storage register in Device Configuration mode.
User should call MBR_SaveSettingsToFlash API to store the data permanently.

Parameters Name Description Possible values

 bCustomData Date to be written in Custom register 0 to 255

Return None

Example
MBR_SetCustomData(200);

Value 200 will be stored in Custom Data Storage registers.

3

Prototype void MBR_IssueSWReset(void);

Description Issues software reset to the CY8CMBR2110 device. Refer to Software Reset

Parameters None

Return None

Example MBR_IssueSWReset();

4

Prototype WORD MBR_ReadFlashChecksum(void);

Description Reads the checksum stored in the flash of CY8CMBR2110 device.

Parameters None

Return Flash checksum of CY8CMBR2110 device

Example MBR_ReadFlashChecksum();

5

Prototype WORD MBR_ReadRAMChecksum(void);

Description Reads the checksum stored in the RAM of CY8CMBR2110 device.

Parameters None

Return RAM checksum of CY8CMBR2110 device

 Appendix

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 63

Example MBR_ReadRAMChecksum();

6

Prototype void MBR_SetChecksum(void);

Description
Writes the checksum calculated by the host in to the CY8CMBR2110 device. Host itself calculates the
check sum of the configurations

Parameters None

Return None

Example MBR_SetChecksum();

7

Prototype BYTE MBR_ReadChecksumMatch(void);

Description
Checks whether RAM checksum calculated by CY8CMBR2110 device is same as that of the checksum
entered by the Host.

Parameters None

Return
0 or 1
0 for checksum mismatch
1 for checksum match

Example MBR_ReadChecksumMatch();

8

Prototype BYTE MBR_SaveSettingsToFlash(void);

Description
Saves the current configuration of the CY8CMBR2110 device to flash (refer to the Configuring the
CY8CMBR2110)

Parameters None

Return

0 or 1

0 - save to flash is not successful

1 - save to flash is successful

Example MBR_SaveSettingsToFlash();

9

Prototype BYTE MBR_SettingsLoaded(void);

Description Indicates whether the factory default setting or the user configured setting is loaded

Parameters None

Return
0 or 1
0 - user configured settings
1 - factory default settings

Example MBR_SettingsLoaded();

10

Prototype void MBR_LoadFactoryDefaults(void);

Description Loads the factory default settings configuration in to the RAM of CY8CMBR2110 device.

Parameters None

Return None

Example MBR_LoadFactoryDefaults();

11

Prototype void MBR_ReadConfigData(BYTE abConfigData[]);

Description Loads the LED configuration and device configuration data from the CY8CMBR2110 device.

Parameters Name Description Possible values

 Appendix

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 64

 abConfigData
Pointer to 64-byte array to hold all the
configuration data

Return None

Example
MBR_ReadConfigData(abConfigData);
abConfigData is a pointer to the 64-byte array abConfigData[64].The array is updated with all the
configuration data.

12

Prototype void MBR_LEDEffectsBreathing(BYTE bGPO, BYTE bBreath);

Description
Enables or disables the button touch LED effects breathing.
Note For LED effects, GPOs are grouped as: GPO0, GPO123, GPO456, GPO789 Configuring one GPO
in a group also configures the other GPOs in that group.

Parameters Name Description Possible values

 bGPO GPO number 0 to 9

 bBreath Enable/disable the breathing effect
0 or 1
0 - disable breathing
1 - enable breathing

Return None

Example
MBR_LEDEffectsBreathing(GPO4, FEATURE_ENABLE);
GPO4 is a macro with value 4, FEATURE_ENABLE is a macro with value 1 (inputs.h).

13

Prototype
void MBR_LEDEffectsRepeatRate(BYTE bGPO, BYTE bRepeatRate,
 BYTE bPwrOnOrBtnTch);

Description

Sets the repeat rate of the LED effect for selected GPOs.

Note For LED effects, GPOs are grouped as: GPO0, GPO123, GPO456, GPO789 Configuring one GPO
in a group also configures the other GPOs in that group.

Parameters Name Description Possible values

 bGPO GPO number 0 to 9

 bRepeatRate Repeat rate of the LED effect

0 to 7

0 - Repeat rate of 0

1 - Repeat rate of 1

2 - Repeat rate of 2

3 - Repeat rate of 4

4 - Repeat rate of 6

5 - Repeat rate of 10

6 - Repeat rate of 15

7 - Repeat rate of 20

 bPwrOnOrBtnTch Power on or button touch LED effects
1 or 2
1 - power on LED
2 - Button touch LED

Return None

Example
MBR_LEDEffectsRepeatRate(GPO1,REPEAT_RATE_20,POWER_ON_LED_EFFECTS);
GPO1, REPEAT_RATE_20,POWER_ON_LED_EFFECTS are macros with values 1, 7, 1 (inputs.h).

14 Prototype
void MBR_LEDEffectsLowBrightness(BYTE bGPO, BYTE bLowBright,
BYTE bPwrOnOrBtnTch);

 Appendix

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 65

Description

Sets the LED low brightness for the GPOs.

Note For LED effects, GPOs are grouped as: GPO0, GPO123, GPO456, GPO789 Configuring one GPO
in a group also configures the other GPOs in that group.

Parameters Name Description Possible values

 bGPO GPO number 0 to 9

 bLowBright Low brightness level as per register map

0 to 7

0 - Low brightness 0%

1 - Low brightness 10%

 ……………………………

 …………………………...

7 – Low brightness 100%

 bPwrOnOrBtnTch Power on or button touch LED effects
1 or 2
1 - power on LED
2 - Button touch LED

Return None

Example
MBR_LEDEffectsLowBrightness(GPO2, LOW_BRIGHT_80, BTN_TOUCH_LED_EFFECTS);
GPO2, LOW_BRIGHT_80, BTN_TOUCH_LED_EFFECTS are macros with values 2 ,6, 2 (inputs.h).

15

Prototype void MBR_LEDEffectsHighBrightness(BYTE bGPO, BYTE bHighBright, BYTE bPwrOnOrBtnTch);

Description

Sets the LED high brightness for the GPOs.

Note For LED effects, GPOs are grouped as: GPO0, GPO123, GPO456, GPO789 Configuring one GPO
in a group also configures the other GPOs in that group.

Parameters Name Description Possible values

 bGPO GPO number 0 to 9

 bHighBright
High brightness level as per the register
map

0 to 7

0 - High brightness 100%

1 - High brightness 90%

 ……………………………

 …………………………...

7 - High brightness 0%

 bPwrOnOrBtnTch Power on or button touch LED effects
1 or 2
1 - power on LED
2 - Button touch LED

Return None

Example
MBR_LEDEffectsHighBrightness(GPO9, HIGH_BRIGHT_50, BTN_TOUCH_LED_EFFECTS);
GPO9, HIGH_BRIGHT_50, BTN_TOUCH_LED_EFFECTS are macros with values 9 ,4, 2 (inputs.h).

16

Prototype
void MBR_LEDEffectsLowTime(BYTE bGPO, BYTE bLowTime,
BYTE bPwrOnOrBtnTch);

Description

Sets the LED low time for GPOs.

Note For LED effects ,GPOs are grouped as: GPO0, GPO123, GPO456, GPO789 Configuring one GPO
in a group also configures the other GPOs in that group.

Parameters Name Description Possible values

 bGPO GPO number 0 to 9

 Appendix

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 66

 bLowTime
Global period register map to the get
the low time value

0 to 1

0 - GLOBAL_PERIOD_1
1 - GLOBAL_PERIOD_2

 bPwrOnOrBtnTch Power on or button touch LED effects
1 or 2
1 - power on LED
2 - Button touch LED

Return None

Example
MBR_LEDEffectsLowTime(GPO6, GLOBAL_PERIOD_1, BTN_TOUCH_LED_EFFECTS);
GPO6, GLOBAL_PERIOD_1, BTN_TOUCH_LED_EFFECTS are macros with values 6, 0, 2 (inputs.h).

17

Prototype
void MBR_LEDEffectsHighTime(BYTE bGPO, BYTE bHighTime,
BYTE bPwrOnOrBtnTch);

Description

Set the LED high time for the GPOs.

Note For LED effects, GPOs are grouped as: GPO0, GPO123, GPO456, GPO789 Configuring one GPO
in a group also configures the other GPOs in that group.

Parameters Name Description Possible values

 bGPO GPO number 0 to 9

 bHighTime
Global period register map to the get the
high time value

0 to 1

0 - GLOBAL_PERIOD_1
1 - GLOBAL_PERIOD_2

 bPwrOnOrBtnTch Power on or button touch LED effects
1 or 2
1 - power on LED
2 - Button touch LED

Return None

Example
MBR_LEDEffectsHighTime(GPO5, GLOBAL_PERIOD_2, BTN_TOUCH_LED_EFFECTS);
GPO5, GLOBAL_PERIOD_2, BTN_TOUCH_LED_EFFECTS are macros with values 5, 1, 2 (inputs.h).

18

Prototype
void MBR_LEDEffectsRampDown(BYTE bGPO, BYTE bRampDown,
BYTE bPwrOnOrBtnTch);

Description

Sets the ramp down time for the GPOs.

Note For LED effects, GPOs are grouped as: GPO0, GPO123, GPO456, GPO789 Configuring one GPO
in a group also configures the other GPOs in that group.

Parameters Name Description Possible values

 bGPO GPO number 0 to 9

 bRampDown
Global period register map to the get the
ramp down time value

0 to 3

0 - GLOBAL_PERIOD_1
1 - GLOBAL_PERIOD_2
2 - GLOBAL_PERIOD_3
3 - GLOBAL_PERIOD_4

 bPwrOnOrBtnTch Power on or button touch LED effects
1 or 2
1 - power on LED
2 - Button touch LED

Return None

Example
MBR_LEDEffectsRampDown(GPO8, GLOBAL_PERIOD_1, POWER_ON_LED_EFFECTS);
GPO8, GLOBAL_PERIOD_1, POWER_ON_LED_EFFECTS are macros with values 8, 0, 1 (inputs.h).

 Appendix

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 67

19

Prototype void MBR_LEDEffectsRampUp(BYTE bGPO, BYTE bRampUp, BYTE bPwrOnOrBtnTch);

Description

Sets the ramp up time for the GPOs.

Note For LED effects, GPOs are grouped as: GPO0, GPO123, GPO456, GPO789 Configuring one GPO
in a group also configures the other GPOs in that group.

Parameters Name Description Possible values

 bGPO GPO number 0 to 9

 bRampUp
Global period register map to the get the
ramp up time value

0 to 3

0 - GLOBAL_PERIOD_1
1 - GLOBAL_PERIOD_2
2 - GLOBAL_PERIOD_3
3 - GLOBAL_PERIOD_4

 bPwrOnOrBtnTch Power on or button touch LED effects
1 or 2
1 - power on LED
2 - Button touch LED

Return None

Example
MBR_LEDEffectsRampUp(GPO8, GLOBAL_PERIOD_1, POWER_ON_LED_EFFECTS)
GPO8, GLOBAL_PERIOD_1, POWER_ON_LED_EFFECTS are macros with values 8, 0, 1 (inputs.h).

20

Prototype void MBR_PowerONLEDEffectSeq(BYTE bPwrOnSeq);

Description
Sets the power-on LED Effects sequence (concurrent or sequential) .Make sure that you enabled the
power on LED effects before calling this API.

Parameters Name Description Possible values

 bPwrOnSeq Type of Power on LED effect sequence
0 or 1
0 - concurrent
1 - sequential

Return None

Example
MBR_PowerONLEDEffectSeq(POWER_ON_SEQUENTIAL);
POWER_ON_SEQUENTIAL is a macro with value 1 (inputs.h).

21

Prototype void MBR_PowerONLEDEffects(BYTE bEnable);

Description Enables or disables power on LED effects.

Parameters Name Description Possible values

 bEnable Enable or disable the effect
0 to 1
0 - disable the effect
1 - enable the effect

Return None

Example
MBR_PowerONLEDEffects(FEATURE_ENABLE);
FEATURE_ENABLE is a macro with value 1 (inputs.h).

22

Prototype void MBR_ButtonLEDEffects(BYTE bEnable);

Description Enables or disables the Button Touch LED Effects

Parameters Name Description Possible values

 bEnable Enable or disable the effect
0 to 1
0 - disable the effect
1 - enable the effect

Return None

 Appendix

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 68

Example
MBR_ButtonLEDEffects(FEATURE_DISABLE);
FEATURE_DISABLE is a macro with a value 0. (inputs.h)

23

Prototype void MBR_StandbyModeLEDBrightness(BYTE bLEDBrightness);

Description Sets the standby mode LED Brightness level.

Parameters Name Description Possible values

 bLEDBrightness
Standby mode brightness level as per the
register map

0 to 3
0 - 0% brightness
1 - 20% brightness
2 - 30% brightness
3 - 50% brightness

Return None

Example
MBR_StandbyModeLEDBrightness(STDBY_LED_50) ;
STDBY_LED_50 is a macro with value 3 (inputs.h)

24

Prototype void MBR_LEDEffectLastButton(BYTE bEnable);

Description Enables or disables LED effects on last button touch feature.

Parameters Name Description Possible values

 BYTE bEnable Enable or disable the effect
0 or 1
0 - disable the effect
1 - enable the effect

Return None

Example
MBR_LEDEffectLastButton(FEATURE_DISABLE);
FEATURE_DISABLE is a macro with value 0 (inputs.h)

25

Prototype void MBR_SetGlobalPeriod(BYTE bPeriodReg, WORD wPeriodValue);

Description Sets the period value in the global period register

Parameters Name Description Possible values

 bPeriodReg Global period register map

0 to 3

0 - GLOBAL_PERIOD_1
1 - GLOBAL_PERIOD_2
2 - GLOBAL_PERIOD_3
3 - GLOBAL_PERIOD_4

 wPeriodValue Global period value in (ms) 0 to 1600

Return None

Example
MBR_SetGlobalPeriod(GLOBAL_PERIOD_1,600)
GLOBAL_PERIOD_1 is a macro with value 0 (inputs.h).

26

Prototype void MBR_SetAllGlobalPeriods(WORD awPeriodValue[]);

Description Sets the period values of all the global period registers.

Parameters Name Description Possible values

 awPeriodValue
Pointer to a 4-word array holding the
period values in (ms)

0 to 1600

Return None

Example
MBR_SetAllGlobalPeriods(wTestBuffer);
wTestBuffe is the base pointer of the 4-word array wTestBuffer[4].

 Appendix

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 69

27

Prototype void MBR_SetAllLEDParameters(BYTE bGPO, BYTE abParam[]);

Description

Sets all the LED effects parameters for any GPO.

 Note For LED effects, GPOs are grouped as: GPO0, GPO123, GPO456, GPO789. Configuring one
GPO in a group also configures the other GPOs in that group.

Parameters Name Description Possible values

 bGPO GPO number 0 to 9

 awPeriodValue
Pointer to 9 byte array
holding configuring
parameters

byte[0] - Power On or Button Touch effects
byte[1] - High brightness level
byte[2] - Low brightness level
byte[3] - Ramp up time mapping to global period
registers
byte[4] - Ramp down time mapping to global
period registers
byte[5] - High time mapping to global period
registers
byte[6] - Low time mapping to global period
registers
byte[7] - Repeat rate
byte[8] - Breathing effect enable/disable

Return None

Example
MBR_SetAllLEDParameters(GPO2, bconfig);
bconfig is a pointer of the 9-byte array bconfig[9].

28

Prototype BYTE MBR_ReadDeviceID(void);

Description Reads the CY8CMBR2110 device ID.

Parameters None

Return Device ID of CY8CMBR2110.The ID is “0xA1”.

Example MBR_ReadDeviceID();

29

Prototype BYTE MBR_ReadFWRevision(void);

Description Reads the slave device firmware revision.

Parameters None

Return Device firmware revision

Example MBR_ReadFWRevision();

30

Prototype void MBR_SetDebugSensorNumber(BYTE bSensor);

Description Sets the sensor number for which the debug data has to be sent.

Parameters Name Description Possible values

 bSensor Sensor number 0 to 9

Return None

Example
MBR_SetDebugSensorNumber(CS0);
CS0 is a macro with value 0 (inputs.h).

 Appendix

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 70

31

Prototype void MBR_SetDebugDataParameter(BYTE bParameter);

Description Set the type of parameter to be sent in debug data out.

Parameters Name Description Possible values

 bParameter Type of parameter

0 to 4
0 - CP
1 - Raw counts
2 - Difference counts
3 - Raw counts ,baseline
4 - All parameters(CP, Raw
count, difference count,
base line, SNR)

Return None

Example
MBR_SetDebugDataParameter(DEBUG_PARAM_CP);
DEBUG_PARAM_CP is a macro with value 0 (inputs.h).

32

Prototype void MBR_ReadDebugData(BYTE abDebugData[]);

Description Reads the debug data of the selected parameter from the debug data register map

Parameters Name Description Possible values

 abDebugData
Pointer to 25-byte array to hold the
debug data

Return None

Example
MBR_ReadDebugData(bgetdata);
bgetdata is a pointer to the 25-byte array bgetdata[25]. The array is updated with the debug data.

33

Prototype void MBR_SetBuzzer(BYTE bEnable);

Description Enables or disables the audio feedback (buzzer).

Parameters Name Description Possible values

 bEnable Enable or disable buzzer
0 or 1
0 – enable
1 – disable

Return None

Example
MBR_SetBuzzer(FEATURE_ENABLE)
FEATURE_ENABLE is a macro with value 1 (inputs.h).

34

Prototype void MBR_SetBuzzerPins(BYTE bBuzzerPins);

Description Sets the number of pins for the buzzer.

Parameters Name Description Possible values

 bBuzzerPins Number of buzzer output pins
0 or 1
0 - 1 pin buzzer
1 - 2 pin buzzer

Return None

Example
MBR_SetBuzzerPins(BUZZER_AC_2_PIN);
BUZZER_AC_2_PIN is a macro with value 1 (inputs.h).

 Appendix

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 71

35

Prototype void MBR_SetBuzzerIdleState(BYTE bIdleState);

Description Sets the idle state of the buzzer pins.

Parameters Name Description Possible values

 bIdleState Buzzer idle state
0 or 1
0 - LOW
1 - HIGH

Return None

Example
MBR_SetBuzzerIdleState(BUZZER_IDLE_HIGH);
BUZZER_IDLE_HIGH is a macro with value 1 (inputs.h)

36

Prototype void MBR_SetBuzzerFrequency(BYTE bFrequency);

Description Sets the output frequency for the buzzer output.

Parameters Name Description Possible values

 bFrequency Buzzer output frequency

1 to 7
1 - 4000 Hz
2 - 2670 Hz
3 - 2000 Hz
4 - 1600 Hz
5 - 1330 Hz
6 - 1140 Hz
7 - 1000 Hz

Return None

Example
MBR_SetBuzzerFrequency (BUZZER_FREQ_1000);
BUZZER_FREQ_1000 is a macro with value 7 (inputs.h).

37

Prototype void MBR_SetBuzzerOutputDuration(WORD wDuration);

Description Sets the duration of the buzzer output.

Parameters Name Description Possible values

 wDuration
Buzzer output duration in millisecond
(ms)

(0 to 127) * Button Scan
Rate

Return None

Example MBR_SetBuzzerOutputDuration(1000);

38

Prototype
void MBR_SetAllBuzzerParameters(BYTE bEnable, BYTE bParameters[],
WORD wOutputDuration);

Description Sets all the buzzer parameters of the CY8CMBR2110 device.

Parameters Name Description Possible values

 bEnable Enable or disable buzzer
0 or 1
0 - disable
1 - enable

 bParameters
Pointer to the 3-byte array holding the
required inputs

Byte [0] – number of buzzer
pins
Byte [1] – buzzer idle state
Byte [2] – buzzer output
frequency

 wOutputDuration Duration of buzzer output in ms
(0 to 127) * Button Scan
Rate

 Appendix

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 72

Return None

Example
MBR_SetAllBuzzerParameters(FEATURE_ENABLE , bbuzzconfig ,1000);
FEATURE_ENABLE is a macro with value 1 (inputs.h), bbuzzconfig is a pointer to a 3-byte array
containing buzzer pins, idle state, and frequency details (1000 is the buzzer duration).

39

Prototype void MBR_SetI2CSlaveAddress (BYTE bNewSlaveAddress);

Description Sets the I
2
C address of the CY8CMBR2110 device. The default address is ‘37h’.

Parameters Name Description Possible values

 bNewSlaveAddress New address value to the device 0x00 to 0x7F

Return None

Example MBR_SetI2CSlaveAddress(50);

40

Prototype void MBR_SetAdaptiveThreshold(BYTE bSetRest);

Description Enables or disables automatic threshold feature of the CY8CMBR2110 device.

Parameters Name Description Possible values

 bSetRest
Enable or disable automatic threshold
feature

0 or 1
0 – to disable
1 – to enable

Return None

Example
MBR_SetAdaptiveThreshold(FEATURE_ENABLE);
FEATURE_ENABLE is a macro with value 1 (inputs.h).

41

Prototype void MBR_SetSensitivity(BYTE bButtonNumber, BYTE bButtonSensitivityLevel);

Description Sets the sensitivity value for a button.

Parameters Name Description Possible values

 bButtonNumber Button number 0 to 9

 bButtonSensitivityLevel Sensitivity level of the button

1 to 3
1 – high sensitivity
2 – medium sensitivity
3 – low sensitivity

Return None

Example
MBR_SetSensitivity (CS9, SENSITIVITY_MEDIUM);
CS9 and SENSITIVITY_MEDIUM are macros with values 9 and 2 (inputs .h).

42

Prototype void MBR_SetSensitivityAll(BYTE bsensitivity[]);

Description Sets the sensitivity value of all the buttons.

Parameters Name Description Possible values

 bsensitivity
Pointer to the 10-byte array holding
the sensitivity level for all the buttons

1 to 3
1 – high sensitivity
2 – medium sensitivity
3 – low sensitivity

Return None

Example
test_MBR_SetSensitivityAll(bBuffer);
bBuffer is a pointer to the 10-byte array bBuffer[10] that holds the sensitivity values for all the buttons
(the first byte corresponds to the button number 0,……..tenth byte corresponds to button 9).

 Appendix

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 73

43

Prototype void MBR_SetDebounce(BYTE bButtonNumber, BYTE bDebouncevalue);

Description
Sets the debounce level of buttons. Button numbers 1 to 9 are configured with the same value. They
cannot be configured individually.

Parameters Name Description Possible values

 bButtonNumber Button number
0 to 1
0 – for button number 0
1 – for button number (1-9)

 bDebouncevalue Debounce value for the buttons 1 to 255

Return None

Example
MBR_SetDebounce(DEBOUNCE_FOR_CS0, 200);
DEBOUNCE _FOR_CS0 is a macro with value 0 (inputs.h).

44

Prototype void MBR_SetFingerThreshold(BYTE bButtonNumber, BYTE bFingerthreshold);

Description Sets the finger threshold level for a button.

Parameters Name Description Possible values

 bButtonNumber Button number 0 to 9

 bFingerthreshold Finger threshold level 0 to 15

Return None

Example
MBR_SetFingerThreshold(CS3, FINGER_THRESHOLD_180);
CS3 and FINGER_THRESHOLD_180 are macros with values 3 and 10 (inputs.h).

45

Prototype void MBR_SetFingerThresholdAll(BYTE bFingerthreshold[]);

Description Sets the finger threshold level for all the sensors.

Parameters Name Description Possible values

 bFingerthreshold
Pointer to the 10-byte array holding
the finger threshold values

0 to 15

Return None

Example
MBR_SetFingerThresholdAll(Buffer);
Buffer is a pointer to the 10-byte array Buffer[10] holding the finger threshold level for all the buttons.
The first byte corresponds to the button number 0,……..tenth byte corresponds to button 9).

46

Prototype BYTE MBR_ReadSensorStatus(BYTE bButtonNumber);

Description Reads the current status of a button (to check current state of button touch).

Parameters Name Description Possible values

 bButtonNumber Button number 0 to 9

Return
0 or 1
0 – button is not pressed (OFF)
1 – button is pressed (ON)

Example
MBR_ReadSensorStatus(CS5);
CS5 is a macro with value 5 (inputs.h).

47

Prototype WORD MBR_ReadSensorStatusAll(void);

Description Reads the current status of all the buttons.

 Appendix

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 74

Return

Two bytes with the current status of all the sensors.
LSB is buttons 0 to 7
First two bits of MSB are buttons 8 and 9

For example, 0x0301 indicates buttons 0, 8, 9 are touched (ON) and rest of the buttons are not touched
(OFF).

Example MBR_ReadSensorStatusAll();

48

Prototype WORD MBR_ReadLatchStatusAll(void);

Description Reads the latched status of all the sensors.

Parameters None

Return

Two bytes with the current latched status of all the sensors.
LSB is buttons 0 to 7
First two bits of MSB are buttons 8 and 9

For example, 0x0301 indicates buttons 0, 8, 9 were touched (ON) and rest of the buttons were not
touched (OFF) before the current I

2
C read.

Example MBR_ReadLatchStatusAll();

49

Prototype void MBR_EnterDeepSleep(void);

Description
Sets the Deep sleep bit as 1 in operating mode register so device will enter into deep sleep mode.
Follow the procedures in Deep Sleep Mode to change the mode to deep sleep mode.

Parameters None

Return None

Example MBR_EnterDeepSleep();

50

Prototype void MBR_SetPowerOptimization(BYTE bOptimization);

Description
Sets the power consumption optimized or response time optimized design for the CY8CMBR2110
device.

Parameters Name Description Possible values

 bOptimization
Enables power consumption or response
time optimization

0 or 1
0 - response time optimization
1 - power consumption
optimization

Return None

Example
MBR_SetPowerOptimization(PWR_CONS_OPT);
PWR_CONS_OPT is a macro with value 1 (inputs.h)

51

Prototype void MBR_SetScanRate(BYTE bSetscanvalue);

Description Sets the scan rate of the CY8CMBR2110 device.

Parameters Name Description Possible values

 bSetscanvalue
Scan rate values as per the
register map

0 to 31

0 – 25 ms

31- 561 ms

Return None

Example MBR_SetScanRate(30);

52 Prototype void MBR_SetHGPOValue(BYTE bHGPO_Number, BYTE bDriveLogic);

 Appendix

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 75

Description Sets the drive logic of a HGPO.

Parameters Name Description Possible values

 bHGPO_Number
Host controlled GPO
(HGPO) number

0 to 3
0 - HGPO0
1 - HGPO1
2 - HGPO2
3 - HGPO3

 bDriveLogic Drive logic level
0 or 1
1 - HIGH
0 - LOW

Return None

Example
MBR_SetHGPOValue(HOSTGPO_3, HOSTGPO_HIGH);
HOSTGPO_3 and HOSTGPO_HIGH are macros with values 3 and 1 (inputs.h).

53

Prototype
void MBR_SetAllHGPOValue(BYTE bdriveGP0, BYTE bdriveGP1, BYTE bdriveGP2,
BYTE bdriveGP3);

Description Sets the drive logic of all HGPOs.

Parameters Name Description Possible values

 bdriveGP0 Drive logic of HGPO0 0 or 1

 bdriveGP1 Drive logic of HGPO1 0 or 1

 bdriveGP2 Drive logic of HGPO2 0 or 1

 bdriveGP3 Drive logic of HGPO3 0 or 1

Return None

Example

void MBR_SetAllHGPOValue(HOSTGPO_HIGH, HOSTGPO_HIGH, HOSTGPO_LOW,
HOSTGPO_LOW);
HOSTGPO_HIGH, HOSTGPO_HIGH, HOSTGPO_LOW, and HOSTGPO_LOW are macros with the
values 1, 1, 0, 0 (inputs.h).

54

Prototype void MBR_AnalogOutput(BYTE bSet_Reset)

Description Enables or disables analog output voltage feature of the CY8CMBR2110 device.

Parameters Name Description Possible values

 bSet_Reset Set or resets analog output voltage feature 0 or 1

Return None

Example
MBR_AnalogOutput(FEATURE_ENABLE);
FEATURE_ENABLE is a macro with value 1 (inputs.h).

55

Prototype void MBR_SetToggle (BYTE bButtonNumber, BYTE fSet_Reset);

Description Enables or disables the toggle feature for a button of the CY8CMBR2110 device.

Parameters Name Description Possible values

 bButtonNumber Button number 0 to 9

 fSet_Reset Enable or disable toggle
0 or 1
0 - disable
1 - enable

Return None

 Appendix

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 76

Example
MBR_SetToggle(CS0,FEATURE_ENABLE);
FEATURE_ENABLE is a macro with value 1 (inputs.h).

56

Prototype void MBR_SetToggleAll(BYTE afSet_Reset[]);

Description Enables or disables the toggle feature for all the buttons

Parameters Name Description Possible values

 afSet_Reset
Pointer to 2-byte array
holding values

Byte[1] - 0x00 to 0xFF
Byte[2] - 0x00 to 0x03

Return None.

Example

MBR_SetToggleAll(Buffer);
Buffer is a pointer to the 2-byte array Buffer
Buffer[1] holds the values for buttons 0 to 7
The first two bits of Buffer[2] hold the values for buttons 8 and 9.

For example, Buffer[1] = 0xFF enables toggle for buttons 0 to 7, and Buffer[2] = 0x01 enables toggle for
button 8 and disables toggle for button 9.

57

Prototype void MBR_LEDONTime(BYTE bSet_Reset);

Description Enables or disables LED on time feature of CY8CMBR2110 device.

Parameters Name Description Possible values

 bSet_Reset
Enable or disable the
feature

0 or 1
0 - disable
1- enable

Return None

Example
MBR_LEDONTime(FEATURE_DISABLE);
FEATURE_DIASBLE is a macro with value 0 (inputs.h).

58

Prototype BYTE MBR_ReadValidSensors(void);

Description
Reads the valid sensor/button count
Buttons may be disabled due to short to VDD, short to GND, improper CP value, and improper CMOD
value.

Parameters None

Return
One byte of data indicating the valid sensor count
A return value of 8 indicates eight buttons are valid and two buttons are disabled.

Example MBR_ReadValidSensors();

59

Prototype BYTE MBR_ReadFMEAGround(BYTE bButtonNumber);

Description
Reads the system diagnostics data of one button for short to ground (checks if a button is shorted to
ground).

Parameters Name Description Possible values

 bButtonNumber Button number 0 to 9

Return
0 or 1
0 - button is not shorted to ground
1 - button is shorted to ground

Example
MBR_ReadFMEAGround(CS9);
CS9 is a macro with value 9 (inputs.h).

60

Prototype WORD MBR_ReadFMEAGroundAll(void);

Description Reads the system diagnostics data of all the buttons for short to ground.

 Appendix

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 77

Parameters None

Return

Two bytes to indicate which buttons are shorted to ground
LSB is buttons 0 to 7
First two bits of MSB are buttons 8 and 9

For example, 0x02F1 indicates buttons 0,4,5,6,7,9 are shorted to ground

Example MBR_ReadFMEAGroundAll();

61

Prototype BYTE MBR_ReadFMEAVDD(BYTE bButtonNumber);

Description Reads the system diagnostics data of one button for short to VDD (checks if a button is shorted to VDD).

Parameters Name Description Possible values

 bButtonNumber Button number 0 to 9

Return
0 or 1
0 - button is not shorted to VDD
1 - button is shorted to VDD

Example
MBR_ReadFMEAVDD(CS8);
CS8 is a macro with value 8 (inputs.h).

62

Prototype WORD MBR_ReadFMEAVDDAll(void);

Description Reads the system diagnostics data of all the buttons for short to VDD.

Parameters None

Return

Two bytes to indicate which buttons are shorted to VDD.
LSB is buttons 0 to 7
First two bits of MSB are buttons 8 and 9.

For example, 0x02F1 indicates buttons 0,4,5,6,7,9 are shorted to VDD.

Example MBR_ReadFMEAVDDAll();

63

Prototype WORD MBR_ReadFMEASnsToSnsAll(void);

Description Reads the system diagnostics data of all the buttons for button to button short.

Parameters None

Return

Two bytes to indicate which buttons are shorted to another button.
LSB is buttons 0 to 7
First two bits of MSB are buttons 8 and 9.

For example, 0x02F1 indicates buttons 0,4,5,6,7,9 are shorted to another button.

Example MBR_ReadFMEASnsToSnsAll();

64

Prototype BYTE MBR_ReadFMEASensorCP(BYTE bButtonNumber);

Description Read the system diagnostics data of a button for high Cp value.

Parameters Name Description Possible values

 bButtonNumber Button number 0 to 9

Return
0 or 1
0 - Cp of the button is proper (Cp < 40 pF)
1 - Cp of the button is high (Cp > 40 pF)

Example
MBR_ReadFMEASensorCP(CS0);
CS0 is a macro with value 0 (inputs.h).

 Appendix

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 78

65

Prototype WORD MBR_ReadFMEASensorCpAll(void);

Description Reads the system diagnostics data of all the buttons for high CP values.

Parameters None

Return

Two bytes to indicate which buttons have a high Cp value.
LSB is buttons 0 to 7
First two bits of MSB are buttons 8 and 9.

For example, 0x02F1 indicates buttons 0,4,5,6,7,9 have Cp > 40 pF.

Example MBR_ReadFMEASensorCpAll();

66

Prototype BYTE MBR_ReadFMEACMOD(void);

Description Reads the system diagnostics of CMOD (checks the CMOD capacitance value).

Parameters None

Return
0 - if CMOD is proper within (1- 4) nF
1 - if COMD is above 4 nF
2 - if CMOD is below 1 nF

Example MBR_ReadFMEACMOD();

67

Prototype BYTE MBR_ReadSensorSNR(BYTE bButtonNumber);

Description Reads the SNR value of the button.

Parameters Name Description Possible values

 bButtonNumber Button number 0 to 9

Return One byte to indicate the button SNR. SNR value can range from 0 to 15 for a button

Example
MBR_ReadSensorSNR(CS9);
CS9 is a macro with value 9 (inputs.h).

68

Prototype void MBR_ReadSensorSNRAll(BYTE bSensor_SNR[TOTAL_BUTTON_COUNT]);

Description Reads the SNR value of all the buttons

Parameters Name Description Possible values

 bSensor_SNR[TOTAL_BUTTON_COUNT]
Pointer to 10-byte array to
hold the read values from
the device

Return None

Example

MBR_ReadSensorSNRAll(buffer);
buffer is a pointer to a 10-byte array that is updated with the SNR values starting from button 0 (The first
byte corresponds to button 0, the second byte corresponds to button 1,…. Tenth byte corresponds to
button 9.).

69

Prototype void MBR_SetAutoResetTime(BYTE bSet_time);

Description Sets the auto reset time of all the buttons.

Parameters Name Description Possible values

 bSet_time Auto reset time value
1 - no limit
2 - 5 sec
3 - 20 sec

Return None

 Appendix

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 79

Example
MBR_SetAutoResetTime(AUTO_RESET_20S);
AUTO_RESET_20S is a macro with value 3 (inputs.h).

70

Prototype void MBR_SetEMC(BYTE bSet_Reset);

Description Enables or disable EMC feature in CY8CMBR2110 device.

Parameters Name Description Possible values

 bSet_Reset Enable or disable EMC
0 or 1
0 - disable
1 - enable

Return None

Example
MBR_SetEMC(FEATURE_ENABLE);
FEATURE_ENABLE is a macro with value 1 (inputs.h).

71

Prototype void MBR_SetFSS(BYTE bButtonNumber, BYTE fSet_Reset);

Description Enables or disables the FSS (Flanking Sensor suppression) feature for a button.

Parameters Name Description Possible values

 bButtonNumber Button number 0 to 9

 fSet_Reset Enable or disable feature
0 or 1
0 - disable
1 - enable

Return None

Example
MBR_SetFSS(CS0,FEATURE_DISABLE);
CS0 and FEATURE_DISABLE are macros with values 0 and 1 (inputs.h).

72

Prototype void MBR_SetFSSAllSensors(BYTE afSet_Reset[])

Description Enables or disables the FSS (Flanking Sensor suppression) feature for all the buttons.

Parameters Name Description Possible values

 afSet_Reset
Pointer to 2-byte array
holding the configuring
values

Byte[1] - 0x00 to 0xFF
Byte[2] - 0x00 to 0x03

Return None

Example

MBR_SetFSSAllSensors(Buffer);
Buffer is a pointer to 2-byte array Buffer[2].
Buffer[1] holds the values for buttons 0 to 7
The first two bits of Buffer[2] hold the values for buttons 8 and 9

For example: Buffer[1] = 0xFF enables FSS for buttons 0 to 7 , Buffer[2] = 0x01 enables the feature for
button 8, Buffer[2] =0x02 enables the feature for button 9 and disables the feature for button 8.

 Appendix

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 80

7.2.2 Low-Level APIs

1 Prototype void MBR_WriteBytes(BYTE abWriteBuffer[], BYTE bNumberOfBytes)

Description Write the array of bytes to the CapSense slave device.

Parameters Name Description Possible values

 abWriteBuffer Pointer to the Host I
2
C buffer array 1 to 31 bytes

 bNumberOfBytes Number of bytes to be written 1 to 31

Return None

Example MBR_WriteBytes(abHostI2CBuffer, 3);

2 Prototype void MBR_ReadBytes(BYTE abReadBuffer[] , BYTE bNumberOfBytes)

Description Read the array of bytes from the CapSense slave device.

Parameters Name Description Possible values

 abReadBuffer Pointer to Host I
2
C buffer array 1 to 32 bytes

 bNumberOfBytes Number of bytes to be read 1 to 32

Return None

Example MBR_ReadBytes(bHostI2CBuffer, 6);

3 Prototype void MBR_Delay(WORD wDelayTime)

Description Implements software delay in milliseconds.

Parameters Name Description Possible values

 wDelayTime Delay time in (ms)

Return None

Example MBR_Delay(100);

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 81

Glossary

AMUXBUS

Analog multiplexer bus available inside PSoC that helps to connect I/O pins with multiple internal analog
signals.

SmartSense™ Auto-Tuning

A CapSense algorithm that automatically sets sensing parameters for optimal performance after the
design phase and continuously compensates for system, manufacturing, and environmental changes.

Baseline

A value resulting from a firmware algorithm that estimates a trend in the Raw Count when there is no
human finger present on the sensor. The Baseline is less sensitive to sudden changes in the Raw Count
and provides a reference point for computing the Difference Count.

Button or Button Widget

A widget with an associated sensor that can report the active or inactive state (that is, only two states) of
the sensor. For example, it can detect the touch or no-touch state of a finger on the sensor.

Difference Count

The difference between Raw Count and Baseline. If the difference is negative, or if it is below Noise
Threshold, the Difference Count is always set to zero.

Capacitive Sensor

A conductor and substrate, such as a copper button on a printed circuit board (PCB), which reacts to a
touch or an approaching object with a change in capacitance.

CapSense
®

Cypress’s touch-sensing user interface solution. The industry’s No. 1 solution in sales by 4x over No. 2.

CapSense Mechanical Button Replacement (MBR)

Cypress’s configurable solution to upgrade mechanical buttons to capacitive buttons, requires minimal
engineering effort to configure the sensor parameters and does not require firmware development. These
devices include the CY8CMBR3XXX and CY8CMBR2XXX families.

Centroid or Centroid Position

A number indicating the finger position on a slider within the range given by the Slider Resolution. This
number is calculated by the CapSense centroid calculation algorithm.

Compensation IDAC

A programmable constant current source, which is used by CSD to compensate for excess sensor CP.
This IDAC is not controlled by the Sigma-Delta Modulator in the CSD block unlike the Modulation IDAC.

 Glossary

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 82

CSD

CapSense Sigma Delta (CSD) is a Cypress-patented method of performing self-capacitance (also called
self-cap) measurements for capacitive sensing applications.

In CSD mode, the sensing system measures the self-capacitance of an electrode, and a change in the
self-capacitance is detected to identify the presence or absence of a finger.

Debounce

A parameter that defines the number of consecutive scan samples for which the touch should be present
for it to become valid. This parameter helps to reject spurious touch signals.

A finger touch is reported only if the Difference Count is greater than Finger Threshold + Hysteresis for a
consecutive Debounce number of scan samples.

Driven-Shield

A technique used by CSD for enabling liquid tolerance in which the Shield Electrode is driven by a signal
that is equal to the sensor switching signal in phase and amplitude.

Electrode

A conductive material such as a pad or a layer on PCB, ITO, or FPCB. The electrode is connected to a
port pin on a CapSense device and is used as a CapSense sensor or to drive specific signals associated
with CapSense functionality.

Finger Threshold

A parameter used with Hysteresis to determine the state of the sensor. Sensor state is reported ON if the
Difference Count is higher than Finger Threshold + Hysteresis, and it is reported OFF if the Difference
Count is below Finger Threshold – Hysteresis.

Ganged Sensors

The method of connecting multiple sensors together and scanning them as a single sensor. Used for
increasing the sensor area for proximity sensing and to reduce power consumption.

To reduce power when the system is in low-power mode, all the sensors can be ganged together and
scanned as a single sensor taking less time instead of scanning all the sensors individually. When the
user touches any of the sensors, the system can transition into active mode where it scans all the sensors
individually to detect which sensor is activated.

PSoC supports sensor-ganging in firmware, that is, multiple sensors can be connected simultaneously to
AMUXBUS for scanning.

Gesture

Gesture is an action, such as swiping and pinch-zoom, performed by the user. CapSense has a gesture
detection feature that identifies the different gestures based on predefined touch patterns. In the
CapSense component, the Gesture feature is supported only by the Touchpad Widget.

Guard Sensor

Copper trace that surrounds all the sensors on the PCB, similar to a button sensor and is used to detect a
liquid stream. When the Guard Sensor is triggered, firmware can disable scanning of all other sensors to
prevent false touches.

Hatch Fill or Hatch Ground or Hatched Ground

While designing a PCB for capacitive sensing, a grounded copper plane should be placed surrounding
the sensors for good noise immunity. But a solid ground increases the parasitic capacitance of the sensor
which is not desired. Therefore, the ground should be filled in a special hatch pattern. A hatch pattern has
closely-placed, crisscrossed lines looking like a mesh and the line width and the spacing between two
lines determine the fill percentage. In case of liquid tolerance, this hatch fill referred as a shield electrode
is driven with a shield signal instead of ground.

 Glossary

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 83

Hysteresis

A parameter used to prevent the sensor status output from random toggling due to system noise, used in
conjunction with the Finger Threshold to determine the sensor state. See Finger Threshold.

IDAC (Current-Output Digital-to-Analog Converter)

Programmable constant current source available inside PSoC, used for CapSense and ADC operations.

Liquid Tolerance

The ability of a capacitive sensing system to work reliably in the presence of liquid droplets, streaming
liquids or mist.

Linear Slider

A widget consisting of more than one sensor arranged in a specific linear fashion to detect the physical
position (in single axis) of a finger.

Low Baseline Reset

A parameter that represents the maximum number of scan samples where the Raw Count is abnormally
below the Negative Noise Threshold. If the Low Baseline Reset value is exceeded, the Baseline is reset
to the current Raw Count.

Manual-Tuning

The manual process of setting (or tuning) the CapSense parameters.

Matrix Buttons

A widget consisting of more than two sensors arranged in a matrix fashion, used to detect the presence
or absence of a human finger (a touch) on the intersections of vertically and horizontally arranged
sensors.

If M is the number of sensors on the horizontal axis and N is the number of sensors on the vertical axis,
the Matrix Buttons Widget can monitor a total of M x N intersections using ONLY M + N port pins.

When using the CSD sensing method (self-capacitance), this Widget can detect a valid touch on only one
intersection position at a time.

Modulation Capacitor (CMOD)

An external capacitor required for the operation of a CSD block in Self-Capacitance sensing mode.

Modulator Clock

A clock source that is used to sample the modulator output from a CSD block during a sensor scan. This
clock is also fed to the Raw Count counter. The scan time (excluding pre and post processing times) is
given by (2

N
– 1)/Modulator Clock Frequency, where N is the Scan Resolution.

Modulation IDAC

Modulation IDAC is a programmable constant current source, whose output is controlled (ON/OFF) by the
sigma-delta modulator output in a CSD block to maintain the AMUXBUS voltage at VREF. The average
current supplied by this IDAC is equal to the average current drawn out by the sensor capacitor.

Mutual-Capacitance

Capacitance associated with an electrode (say TX) with respect to another electrode (say RX) is known
as mutual capacitance.

 Glossary

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 84

Negative Noise Threshold

A threshold used to differentiate usual noise from the spurious signals appearing in negative direction.
This parameter is used in conjunction with the Low Baseline Reset parameter.

Baseline is updated to track the change in the Raw Count as long as the Raw Count stays within
Negative Noise Threshold, that is, the difference between Baseline and Raw count (Baseline – Raw
count) is less than Negative Noise Threshold.

Scenarios that may trigger such spurious signals in a negative direction include: a finger on the sensor on
power-up, removal of a metal object placed near the sensor, removing a liquid-tolerant CapSense-
enabled product from the water; and other sudden environmental changes.

Noise (CapSense Noise)

The variation in the Raw Count when a sensor is in the OFF state (no touch), measured as peak-to-peak
counts.

Noise Threshold

A parameter used to differentiate signal from noise for a sensor. If Raw Count – Baseline is greater than
Noise Threshold, it indicates a likely valid signal. If the difference is less than Noise Threshold, Raw
Count contains nothing but noise.

Overlay

A non-conductive material, such as plastic and glass, which covers the capacitive sensors and acts as a
touch-surface. The PCB with the sensors is directly placed under the overlay or is connected through
springs. The casing for a product often becomes the overlay.

Parasitic Capacitance (CP)

Parasitic capacitance is the intrinsic capacitance of the sensor electrode contributed by PCB trace,
sensor pad, vias, and air gap. It is unwanted because it reduces the sensitivity of CSD.

Proximity Sensor

A sensor that can detect the presence of nearby objects without any physical contact.

Radial Slider

A widget consisting of more than one sensor arranged in a specific circular fashion to detect the physical
position of a finger.

Raw Count

The unprocessed digital count output of the CapSense hardware block that represents the physical
capacitance of the sensor.

Refresh Interval

The time between two consecutive scans of a sensor.

Scan Resolution

Resolution (in bits) of the Raw Count produced by the CSD block.

Scan Time

Time taken for completing the scan of a sensor.

Self-Capacitance

The capacitance associated with an electrode with respect to circuit ground.

 Glossary

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 85

Sensitivity

The change in Raw Count corresponding to the change in sensor capacitance, expressed in counts/pF.
Sensitivity of a sensor is dependent on the board layout, overlay properties, sensing method, and tuning
parameters.

Sense Clock

A clock source used to implement a switched-capacitor front-end for the CSD sensing method.

Sensor

See Capacitive Sensor.

Sensor Auto Reset

A setting to prevent a sensor from reporting false touch status indefinitely due to system failure, or when a
metal object is continuously present near the sensor.

When Sensor Auto Reset is enabled, the Baseline is always updated even if the Difference Count is
greater than the Noise Threshold. This prevents the sensor from reporting the ON status for an indefinite
period of time. When Sensor Auto Reset is disabled, the Baseline is updated only when the Difference
Count is less than the Noise Threshold.

Sensor Ganging

See Ganged Sensors.

Shield Electrode

Copper fill around sensors to prevent false touches due to the presence of water or other liquids. Shield
Electrode is driven by the shield signal output from the CSD block. See Driven-Shield.

Shield Tank Capacitor (CSH)

An optional external capacitor (CSH Tank Capacitor) used to enhance the drive capability of the CSD
shield, when there is a large shield layer with high parasitic capacitance.

Signal (CapSense Signal)

Difference Count is also called Signal. See Difference Count.

Signal-to-Noise Ratio (SNR)

The ratio of the sensor signal, when touched, to the noise signal of an untouched sensor.

Slider Resolution

A parameter indicating the total number of finger positions to be resolved on a slider.

Touchpad

A Widget consisting of multiple sensors arranged in a specific horizontal and vertical fashion to detect the
X and Y position of a touch.

Trackpad

See Touchpad.

Tuning

The process of finding the optimum values for various hardware and software or threshold parameters
required for CapSense operation.

 Glossary

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 86

VREF

Programmable reference voltage block available inside PSoC used for CapSense and ADC operation.

Widget

A user-interface element in the CapSense component that consists of one sensor or a group of similar
sensors. Button, proximity sensor, linear slider, radial slider, matrix buttons, and touchpad are the
supported widgets.

AN76000 - CY8CMBR2110 CapSense
®
 Design Guide, Doc. No. 001-76000 Rev. *G 87

Revision History

Document Revision History

Document Title: AN76000 - CY8CMBR2110 CapSense
®
 Design Guide

Document Number: 001-76000

Revision Issue Date Origin of

Change

Description of Change

** 08/01/2012 UDYG New Design Guide

*A 09/10/2012 UDYG Updated links to external documents

*B 03/14/2013 SEEE Updated Section 3.4 and added Section 7.2.

*C 08/27/2013 UDYG/ZINE Updated SmartSense Auto-Tuning features in Chapter 1.

Updated FSS description.

Updated screenshots for Figures 3-28, 3-29, 3-30 and 3-31.

Added Ez-Click Customizer screenshot

*D 01/14/2015 SSHH Updated references to USB-I2C Bridge

Updated to new template.

*E 01/20/2016 VAIR Added Glossary.

*F 09/15/2016 DIMA Updated hyperlink in section 6.5.

Updated template

*G 07/13/2017 AESATMP8 Updated logo and Copyright.

