

User Guide Please read the Important Notice and Warnings at the end of this document 002-29893 Rev. *N

www.infineon.com page 1 of 84 2022-04-07

ModusToolbox™ user guide

Version

2.4.0

About this document

Scope and purpose

This guide provides information and instructions for using the ModusToolbox™ tools provided by the version
2.4.0 installer and the make build system. This document contains the following chapters:

• Chapter 1 describes ModusToolbox™ software.

• Chapter 2 provides instructions for getting started using the ModusToolbox™ tools.

• Chapter 3 describes the ModusToolbox™ build system.

• Chapter 4 covers different aspects of the ModusToolbox™ board support packages (BSPs).

• Chapter 5 explains the ModusToolbox™ manifest files and how to use them with BSPs, libraries, and code

examples.

• Chapter 6 provides instructions for using a ModusToolbox™ application with various integrated

development environments (IDEs).

Intended audience

This document helps application developers understand how to use all the tools included with ModusToolbox™
software.

Document conventions

Convention Explanation

Bold Emphasizes heading levels, column headings, menus and sub-menus

Italics Denotes file names and paths.

Courier New Denotes APIs, functions, interrupt handlers, events, data types, error handlers, file/folder names,

directories, command line inputs, code snippets

File > New Indicates that a cascading sub-menu opens when you select a menu item

Abbreviations and definitions

The following define the abbreviations and terms used in this document that you may not be familiar with:

• BSP – board support package

• PDL – peripheral driver library

• HAL – hardware abstraction layer

• WHD – Wi-Fi host driver

• WCM – Wi-Fi connection manager

User Guide 2 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Table of contents

Table of contents

1 Introduction .. 3

1.1 What is ModusToolbox™ software? .. 3
1.2 Run-time software ... 3

1.3 Development tools .. 6
1.4 Product versioning .. 13

1.5 Partner ecosystems ... 17

2 Getting started ... 18

2.1 Install and configure software .. 18

2.2 Get help .. 19

2.3 Create applications ... 20
2.4 Update BSPs and libraries .. 24

2.5 Configure settings for devices, peripherals, and libraries ... 26
2.6 Write application code .. 28

2.7 Build, program, and debug ... 29

3 ModusToolbox™ build system ... 32

3.1 Overview .. 32

3.2 Application types ... 32
3.3 BSPs ... 33

3.4 make getlibs .. 33

3.5 Adding source files .. 34

3.6 Pre-builds and post-builds.. 36
3.7 Program and debug .. 37

3.8 Available make targets .. 37

3.9 Available make variables .. 40

4 Board support packages... 48

4.1 Overview .. 48
4.2 What’s in a BSP .. 48

4.3 Creating your own BSP ... 50
4.4 Modifying the BSP configuration for a single application ... 51

5 Manifest files .. 54

5.1 Overview .. 54
5.2 Create your own manifest ... 54
5.3 Using offline content ... 57

5.4 Access private repositories ... 58

6 Using applications with third-party tools ... 59

6.1 Import to Eclipse ... 59

6.2 Exporting to supported IDEs ... 60
6.3 Patched flashloaders for AIROC™ CYW208xx devices .. 82
6.4 Generating files for XMC™ Simulator tool ... 82

User Guide 3 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Introduction

1 Introduction

This chapter provides an overview of the ModusToolbox™ software environment, which provides support for
many types of devices and ecosystems.

1.1 What is ModusToolbox™ software?

ModusToolbox™ software is a modern, extensible development environment supporting a wide range of
Infineon microcontroller devices. It provides a flexible set of tools and a diverse, high-quality collection of

application-focused software. These include configuration tools, low-level drivers, libraries, and operating
system support, most of which are compatible with Linux-, macOS-, and Windows-hosted environments.

The following diagram shows a very high-level view of what is available as part of ModusToolbox™ software.

This is not a comprehensive list. It merely conveys the idea that there are multiple resources available to you.

ModusToolbox™ software does not include proprietary tools or custom build environments. This means you
choose your compiler, your IDE, your RTOS, and your ecosystem without compromising usability or access to

our industry-leading CAPSENSE™, AIROC™ Wi-Fi and Bluetooth®, security, and various other features.

Another important aspect of the ModusToolbox™ software is that each product is versioned. This ensures that

each product can be updated on an ongoing basis, but it also allows you to lock down specific versions of the
tools for your specific environment. See Product versioning for more details.

1.2 Run-time software

ModusToolbox™ tools also include an extensive collection of GitHub-hosted repos comprising Code Examples,
BSPs, plus middleware and applications support. We release run-time software on a quarterly "train model"
schedule, and access to new or updated libraries typically does not require you to update your ModusToolbox™
installation.

New projects start with one of our many Code examples that showcase everything from simple peripheral
demonstrations to complete application solutions. Every Infineon kit is backed by a comprehensive BSP
implementation that simplifies the software interface to the board, enables applications to be re-targeted to

new hardware in no time, and can be easily extended to support your custom hardware without the usual
porting and integration hassle.

Project
Creator

Library
Manager

Eclipse and
partner IDEs

Configurators
and Tuners

Git and Make
build system

Code Examples

Voice / Audio

Human-Machine
Interface

Machine Learning

Graphics

Wi-Fi

Connectivity

Bluetooth®

Security

PSoC
MCU

XMC
MCU

USB
Controllers

AIROC
Connectivity

Processor

AIROC
Bluetooth®

Tools

A
p

p
li

c
a

ti
o

n
s

M
id

d
le

w
a

re
B

S
P

s

Reference Designs

https://github.com/Infineon
https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software

User Guide 4 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Introduction

The extensive middleware collection includes an ever-growing set of sensor interfaces, display support, and
connectivity-focused libraries. The ModusToolbox™ installer also conveniently bundles packages of all the

necessary run-time components you need to leverage the following key Infineon technology focus areas:

• CAPSENSE™ technology

• AnyCloud (AIROC™ Wi-Fi and Bluetooth® applications)

• Machine Learning

• Device Security (PSoC™ 64 "Secure Boot" MCU)

1.2.1 Code examples

All current ModusToolbox™ examples can be found through the GitHub code example page. There you will find

links to examples for the Bluetooth® SDK, PSoC™ 6 MCU, PSoC™ 4 device, among others. For most code

examples examples, you can use git clone or the Project Creator tool to create an application and use it directly
with ModusToolbox™ tools. For some examples, like Mbed OS, you will need to follow the directions in the code
example repository to instantiate the example. Instructions vary based on the nature of the application and the
targeted ecosystem.

In the ModusToolbox™ build infrastructure, any example application that requires a library downloads that

library automatically.

You can control the versions of the libraries being downloaded and also their location on disk, and whether

they are shared or local to the application. Refer to the Library Manager user guide for more details.

1.2.2 Libraries (middleware)

In addition to the code examples, there are many other parts of ModusToolbox™ that are provided as libraries.
These libraries are essential for taking full advantage of the various features of the various devices. When you

create a ModusToolbox™ application, the system downloads all the libraries your application needs. See
ModusToolbox™ build system chapter to understand how all this works.

All current ModusToolbox™ libraries can be found through the GitHub ModusToolbox™ software page. A
ModusToolbox™ application can use different libraries based on the Active BSP. In general, there are several
categories of libraries. Each library is delivered in its own repository, complete with documentation.

1.2.2.1 Common library types:

Most BSPs have some form of the following types of libraries:

• Abstraction Layers – This is usually the RTOS Abstraction Layer.

• Base Libraries – These are core libraries, such as core-lib and core-make.

• Board Utilities – These are board-specific utilities, such as display support or BTSpy.

• MCU Middleware – These include MCU-specific libraries such as freeRTOS or Clib support.

1.2.2.2 AIROC™ Bluetooth® Libraries:

For the AIROC™ Bluetooth® BSPs, there specific libraries that do not apply to any other BSPs, including:

• BTSDK Chip Libraries

• BTSDK Core Support

• BTSDK Shared Source Libraries

• BTSDK Utilities and Host/Peer Apps

https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software
https://www.infineon.com/ModusToolboxLibraryManager
https://github.com/Infineon/modustoolbox-software#libraries

User Guide 5 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Introduction

1.2.2.3 BSP-specific base libraries:

BSP-specific libraries include mtb-hal, mtb-pdl, and recipe-make. Some of these are identified as device-
specific using the following categories:

• cat1/cat1a = PSoC™ 6 MCUs (mtb-hal-cat1, recipe-make-cat1a, etc.)

• cat2 = PSoC™ 4 devices and XMC ™ Industrial MCUs (mtb-hal-cat2, mtb-pdl-cat2)

• cat3 = XMC™ Industrial MCUs (recipe-make-cat3)

1.2.2.4 PSoC™ 6 additional libraries:

Due to the nature of the PSoC™ 6 MCU, plus the combo devices, certain PSoC™ 6 BSPs have additional libraries,
including:

• Bluetooth® Middleware Libraries – These are for the BTStack and Bluetooth® FreeRTOS.

• PSoC™ 6 Middleware – These are libraries specific to the PSoC™ 6 MCU, such as EMEEPROM and DFU.

• Wi-Fi Middleware Libraries – These are libraries for AnyCloud applications on a PSoC™ 6 MCU with AIROC™

CYW43xxx Wi-Fi & Bluetooth® combo chip.

1.2.3 BSPs

The BSP is a central feature of ModusToolbox™ software. The BSP specifies several critical items for the

application, including:

• hardware configuration files for the device (for example, design.modus)

• startup code and linker files for the device

• other libraries that are required to support a kit

BSPs are aligned with our development/evaluation kits; they provide files for basic device functionality. A BSP
typically has a design.modus file that configures clocks and other board-specific capabilities. That file is used by
the ModusToolbox™ configurators. A BSP also includes the required device support code for the device on the

board. You can modify the configuration to suit your application.

1.2.3.1 Supported devices

ModusToolbox™ software supports development on the following Arm Cortex-M devices.

• AIROC™ Wi-Fi and Bluetooth® chips

• PMG1 USB-C Power Delivery Microcontroller

• PSoC™ 4 Configurable Microcontroller (See AN79953: Getting Started with PSoC™ 4 for the supported

PSoC™ 4 devices.)

• PSoC™ 6 MCU

• PSoC™ 64 "Secure Boot" MCU

• XMC™ Industrial Microcontroller

https://www.infineon.com/dgdl/Infineon-AN79953_Getting_Started_with_PSoC_4-ApplicationNotes-v21_00-EN.pdf?fileId=8ac78c8c7cdc391c017d07271fd64bc1&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-files

User Guide 6 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Introduction

1.2.3.2 BSP releases

We release BSPs independently of ModusToolbox™ software as a whole. This search link finds all currently
available BSPs on our GitHub site.

The search results include links to each repository, named TARGET_kitnumber. For example, you will find links

to repositories like TARGET_CY8CPROTO-062-4343W. Each repository provides links to relevant
documentation. The following links use this BSP as an example. Each BSP has its own documentation.

The information provided varies, but typically includes one or more of:

• an API reference for the BSP

• the BSP overview

• a link to the associated kit page with kit-specific documentation

A BSP is specific to a board and the device on that board. For custom development, you can create or modify a
BSP for your device. See the Board support packages chapter for how they work and how to create your own for
a custom board.

1.3 Development tools

The ModusToolbox™ tools package provides you with all the desktop products needed to build sophisticated,

low-power embedded, connected and IoT applications. The tools enable you to create new applications
(Project Creator), add or update software components (Library Manager), set up peripherals and middleware
(Configurators), program and debug (OpenOCD and Device Firmware Updater), and compile (GNU C compiler).

Infineon Technologies understands that you want to pick and choose the tools and products to use, merge

them into your own flows, and develop applications in ways we cannot predict. That’s why ModusToolbox™

software is not a monolithic, proprietary software tool that dictates the use of any particular IDE.

For convenience, the tools package installation includes the Eclipse IDE for ModusToolbox™. However, we fully

support the following IDEs and their corresponding compiler technology, so you are free to develop the way

you wish:

• Microsoft Visual Studio Code (VS Code)

• IAR Embedded Workbench (EW-ARM)

• Arm Microcontroller Developers Kit (µVision 5)

For detailed instructions developing ModusToolbox™ applications with third-party IDEs, see the Exporting to
supported IDEs chapter in this guide.

The ModusToolbox™ tools package installer provides required and optional core resources for any application.

This section provides an overview of the available resources:

• Directory structure

• Documentation

• IDE support

• Tools

The installer does not include code examples or libraries, but it does provide the tools to access them.

https://github.com/Infineon?q=TARGET_
https://github.com/Infineon/TARGET_CY8CPROTO-062-4343W
https://infineon.github.io/TARGET_CY8CPROTO-062-4343W/html/modules.html
https://github.com/Infineon/TARGET_CY8CPROTO-062-4343W
https://www.infineon.com/documentation/development-kitsboards/psoc-6-wi-fi-bt-prototyping-kit-cy8cproto-062-4343w
https://softwaretools.infineon.com/tools/com.ifx.tb.tool.modustoolbox

User Guide 7 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Introduction

1.3.1 Directory structure

Refer to the ModusToolbox™ installation guide for information about installing ModusToolbox™. Once it is
installed, the various ModusToolbox™ top-level directories are organized as follows:

Note: This image shows ModusToolbox™ versions 2.3 and 2.4 installed. Your installation may only
include ModusToolbox™ version 2.4. Refer to the Product versioning section for more details.

The ModusToolbox directory contains the following subdirectories for version 2.4:

• docs_2.4 – This is the top-level documentation directory. It contains various top-level documents and an

html file with links to documents provided as part of ModusToolbox™ software. See Documentation for

more information.

• ide_2.4:

• eclipse (or ModusToolbox.app on macOS) – This contains the optional Eclipse IDE for

ModusToolbox™. It includes the ModusToolbox™ perspective, application management, code authoring
and editing, build tools, and debug capabilities. The IDE supports the C and C++ programming

languages. It includes the GCC Arm build tools. It supports debugging via OpenOCD or J-Link. For more

details, refer to the Eclipse IDE for ModusToolbox™ software user guide.

• tools_2.4: This contains all the various tools and scripts installed as part of ModusToolbox™. See Tools for

more information.

1.3.2 Documentation

The docs directory contains top-level documents and an HTML document with links to all the documents

included in the installation and on the web.

1.3.2.1 Release notes

For the 2.4 release, the release notes document is for all of the ModusToolbox™ software included in the
installation.

1.3.2.2 Top-level documents

This folder contains the Eclipse IDE documentation, the ModusToolbox™ software installation guide, and this
user guide. These guides cover different aspects of using the IDE and various ModusToolbox™ tools.

http://www.infineon.com/ModusToolboxInstallGuide
https://www.infineon.com/MTBEclipseIDEUserGuide

User Guide 8 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Introduction

1.3.2.3 Document index page

The doc_landing.html file provides links to all the documents included in the installation and on the web. This
file is also available from the IDE Help menu.

1.3.3 IDE support

The ModusToolbox™ installer includes an optional Eclipse IDE that is a full-featured, cross-platform IDE. The

ModusToolbox™ build system also provides support for Visual Studio (VS) Code, IAR Embedded Workbench,

and Keil µVision. See the Exporting to supported IDEs chapter for more details.

User Guide 9 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Introduction

1.3.4 Tools

The tools_2.4 directory includes the following configurators, tools, and utilities:

1.3.4.1 Configurators

Each configurator is a cross-platform tool that allows you to set configuration options for the corresponding
hardware peripheral or library. When you save a configuration, the tool generates the C code and/or a
configuration file used to initialize the hardware or library with the desired configuration.

Configurators are independent of each other, but they can be used together to provide flexible configuration

options. They can be used stand alone, in conjunction with other configurators, or as part of a complete

application. All of them are installed during the ModusToolbox™ installation. Each configurator provides a
separate guide, available from the configurator's Help menu.

Configurators perform tasks such as:

• Displaying a user interface for editing parameters

• Setting up connections such as pins and clocks for a peripheral

• Generating code to configure middleware

Note: Some configurators may not be useful for your application.

Configurators store configuration data in an XML data file that provides the desired configuration. Each
configurator has a "command line" mode that can regenerate source based on the XML data file. Configurators

are divided into two types: BSP Configurators and Library Configurators.

User Guide 10 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Introduction

The following diagram shows a high-level view of the configurators that could be used in a typical application.

BSP configurators

BSP configurators configure the hardware on a specific device. This can be a board provided by us, a partner, or

a board that you create that is specific to your application. Some of these configurators interact with the
design.modus file to store and communicate configuration settings between different configurators. Code
generated by a BSP Configurator is stored in a directory named GeneratedSource, which is in the same directory

as the design.modus file. This is generally located in the BSP for a given target board. Some of the BSP

configurators include:

• Device Configurator: Set up the system (platform) functions such as pins, interrupts, clocks, and DMA, as
well as the basic peripherals, including UART, Timer, etc. Refer to the Device Configurator guide for more

details.

• CAPSENSE™ Configurator: Configure CAPSENSE™ hardware, and generate the required firmware. This

includes tasks such as mapping pins to sensors and how the sensors are scanned. Refer to the CAPSENSE™

Configurator guide for more details.

https://www.infineon.com/ModusToolboxDeviceConfig
https://www.infineon.com/ModusToolboxCapSenseConfig
https://www.infineon.com/ModusToolboxCapSenseConfig

User Guide 11 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Introduction

There is also a CAPSENSE™ Tuner to adjust performance and sensitivity of CAPSENSE™ widgets on the

board connected to your computer. Refer to the CAPSENSE™ Tuner guide for more details.

• QSPI Configurator: Configure external memory and generate the required firmware. This includes defining

and configuring what external memories are being communicated with. Refer to the QSPI Configurator

guide for more details.

• Smart I/O Configurator: Configure the Smart I/O. This includes Chip, I/O, Data Unit, and LUT signals

between port pins and the HSIOM. Refer to the Smart I/O Configurator guide for more details.

• SegLCD Configurator: Configure LCD displays. This configuration defines a matrix Seg LCD connection and

allows you to setup the connections and easily write to the display. Refer to the SegLCD Configurator guide

for more details.

Library configurators

Library configurators support configuring application middleware. Library configurators do not read nor
depend on the design.modus file. They generally create data structures to be consumed by software libraries.

These data structures are specific to the software library and independent of the hardware. Configuration data
is stored in a configurator-specific XML file (for example, *.cybt, *.cyusbdev, etc.). Any source code generated by

the configurator is stored in a GeneratedSource directory in the same directory as the XML file. The Library
configurators include:

• Bluetooth® Configurator: Configure Bluetooth® settings. These include options for specifying what
services and profiles to use and what features to offer by creating SDP and/or GATT databases in generated

code. This configurator supports both PSoC™ MCU and AIROC™ Bluetooth® applications. Refer to the

Bluetooth® configurator guide for more details.

• USB Configurator: Configure USB settings and generate the required firmware. This includes options for

defining the Device Descriptor and Settings. Refer to the USB Configurator guide for more details.

• LIN Configurator: Configure various LIN settings, such as frames and signals, and generate the required

firmware. Refer to the LIN Configurator guide for more details.

• Machine Learning (ML) Configurator: Accept a pretrained ML model and generate an embedded model

(as a library), which can be used along with your application code for a target device. Refer to the ML

configurator guide for more details.

• EZ-PD™ Configurator: Configure the features and parameters of the PDStack middleware for PMG1 family

of devices. Refer to the EZ-PD™ Configurator guide for more details.

• "Secure Policy" Configurator: Open, create, and change policy configuration files for PSoC™ 64 "Secure

Boot" MCU devices. Refer to the "Secure Policy" Configurator guide for more details.

1.3.4.2 Other tools

ModusToolbox™ software includes other tools that provide support for application creation, device firmware
updates, and so on. All tools are installed by the ModusToolbox™ tools package installer. With rare exception
each tool has a user guide located in the docs directory beside the tool itself. Most user guides are also available

online.

Other tools Details Documentation

project-creator Create a new application. This tool is a stand-alone tool, available as a GUI and a

command-line tool (CLI).

user guide

library-manager Add, remove, or update libraries and BSP used in an application; edits the Makefile user guide

https://www.infineon.com/ModusToolboxCapSenseTuner
https://www.infineon.com/ModusToolboxQSPIConfig
https://www.infineon.com/ModusToolboxQSPIConfig
https://www.infineon.com/ModusToolboxSmartIOConfig
http://www.infineon.com/ModusToolboxSegLCDConfig
https://www.infineon.com/ModusToolboxBLEConfig
https://www.infineon.com/ModusToolboxUSBConfig
https://www.infineon.com/ModusToolboxLINConfig
https://www.infineon.com/ModusToolboxMLConfig
https://www.infineon.com/ModusToolboxMLConfig
https://www.infineon.com/ModusToolboxEZ-PDConfig
https://www.infineon.com/ModusToolboxSecurePolicyConfig
https://softwaretools.infineon.com/tools/com.ifx.tb.tool.modustoolbox
http://www.infineon.com/ModusToolboxProjectCreatorGuide
http://www.infineon.com/ModusToolboxLibraryManagerGuide

User Guide 12 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Introduction

Other tools Details Documentation

cymcuelftool Merges CM0+ and CM4 application images into a single executable. Typically

launched from a post-build script. This tool is not used by most applications.

user guide is in

the tool’s docs

directory

dfuh-tool Use the Device Firmware Update Host tool to communicate with a PSoC™ 6 MCU

that has already been programmed with an application that includes device

firmware update capability. Provided as a GUI and a command-line tool.

Depending on the ecosystem you target, there may be other over-the-air firmware

update tools available.

user guide

1.3.4.3 Utilities

ModusToolbox™ software includes some additional utilities that are often necessary for application

development. In general, you use these utilities transparently.

Utility Description

GCC Supported toolchain included with the ModusToolbox™ installer.

GDB The GNU Project Debugger is installed as part of GCC.

JRE Java Runtime Environment; required by the Eclipse IDE integration layer.

1.3.4.4 Build system infrastructure

The build system infrastructure is the fundamental resource in ModusToolbox™ software. It serves three
primary purposes:

• create an application, update and clone dependencies

• create an executable

• provide debug capabilities

A Makefile defines everything required for your application, including:

• target hardware (board/BSP to use)

• source code and libraries to use for the application

• ModusToolbox™ tools version, as well as compiler toolchain to use

• compiler/assembler/linker flags to control the build

• assorted variables to define things like file and directory locations

The build system automatically discovers all .c, .h, .cpp, .s, .a, .o files in the application directory and

subdirectories, and uses them in the application. The Makefile can also discover files outside the application
directory. You can add another directory using the CY_SHAREDLIB_PATH variable. You can also explicitly list
files in the SOURCES and INCLUDES make variables.

Each library used in the application is identified by a .mtb file. This file contains the URL to a git repository, a

commit tag, and a variable for where to put the library on disk. For example, a capsense.mtb file might contain
the following line:

http://github.com/cypresssemiconductorco/capsense#latest-

v2.X#$$ASSET_REPO$$/capsense/latest-v2.X

The build system implements the make getlibs command. This command finds each .mtb file, clones the
specified repository, checks out the specified commit, and collects all the files into the specified directory.

Typically, the make getlibs command is invoked transparently when you create an application or use the

https://www.infineon.com/ModusToolboxDFUHostTool

User Guide 13 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Introduction

Library Manager, although you can invoke the command directly from a command line interface. See
ModusToolbox™ build system for detailed documentation on the build system infrastructure.

1.3.4.5 Program and debug support

ModusToolbox™ software supports the Open On-Chip Debugger (OpenOCD) using a GDB server, and supports
the J-Link debug probe. For the Mbed OS ecosystem, ModusToolbox™ supports Arm Mbed DAPLink.

You can use various IDEs to program devices and establish a debug session (see Exporting to supported IDEs).

For programming, CYPRESS™ Programmer is available separately. It is a cross-platform application for
programming PSoC™ 6 devices. It can program, erase, verify, and read the flash of the target device.

Cypress Programmer and the Eclipse IDE use KitProg3 low-level communication firmware. The firmware loader

(fw-loader) is a software tool you can use to update KitProg3 firmware, if you need to do so. The fw-loader tool

is installed with the ModusToolbox™ software. The latest version of the tool is also available separately in a

GitHub repository.

Tool Description Documentation

CYPRESS™

Programmer

CYPRESS™ Programmer functionality is built into ModusToolbox™ Software.

CYPRESS™ Programmer is also available as a stand-alone tool.

Programming tools

page, go to the

documentation tab

fw-loader A simple command line tool to identify which version of KitProg is on a kit,

and easily switch back and forth between legacy KitProg2 and current

KitProg3.

readme.txt file in

the tool directory

KitProg3 This tool is managed by fw-loader, it is not available separately. KitProg3 is a

low-level communication/debug firmware that supports CMSIS-DAP and

DAPLink (for Mbed OS). Use fw-loader to upgrade your kit to KitProg3, if

needed.

user guide

OpenOCD Our specific implementation of OpenOCD is installed with ModusToolbox™

software.

developer’s guide

DAPLink Support is implemented through KitProg3 DAPLink handbook

1.4 Product versioning

ModusToolbox™ products include tools and firmware that can be used individually, or as a group, to develop
connected applications for our devices. We understand that you want to pick and choose the ModusToolbox™
products you use, merge them into your own flows, and develop applications in ways we cannot predict.
However, it is important to understand that every tool and library may have more than one version. The tools

package that provides the set of tools also has its own version. This section describes how ModusToolbox™

products are versioned.

1.4.1 General philosophy

ModusToolbox™ software is not a monolithic entity. Libraries and tools in the context of ModusToolbox™ are
effectively "mini-products" with their own release schedules, upstream dependencies, and downstream
dependent assets and applications. We deliver libraries via GitHub, and we deliver tools though the
ModusToolbox™ installation package.

All ModusToolbox™ products developed by us follow the standard versioning scheme:

• If there are known backward compatibility breaks, the major version is incremented.

• Minor version changes may introduce new features and functionality, but are "drop-in" compatible.

http://openocd.org/doc/doxygen/html/index.html
https://www.infineon.com/products/psoc-programming-solutions
https://github.com/Infineon/Firmware-loader
https://www.infineon.com/products/psoc-programming-solutions
https://www.infineon.com/documentation/development-kitsboards/kitprog-user-guide
http://openocd.org/doc/doxygen/html/index.html
https://os.mbed.com/handbook/DAPLink

User Guide 14 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Introduction

• Patch version changes address minor defects. They are very low-risk (fix the essential defect without

unnecessary complexity).

Code Examples include various libraries automatically. Prior to the ModusToolbox™ 2.3 release, these libraries
were typically the latest versions. From the 2.3 release and newer, when you create a new application from a
code example, any of the included libraries specified with a "latest-style" tag are converted to the "release-

vX.Y.Z" style tag.

If you use the Library Manager to add a library to your project, the tool automatically finds and adds any

required dependent libraries. From the 2.3 release and newer using the MTB flow, these dependencies are
created using "release-vX.Y.Z" style tags. The tool also creates and updates a file named locking_commit.log in
the deps subdirectory inside your application directory. This file maintains a history of all latest to release
conversions made to ensure consistency with any libraries added in the future.

1.4.2 Tools package versioning

The ModusToolbox™ tools installation package is versioned as MAJOR.MINOR.PATCH. The file located at
<install_path>/ModusToolbox/tools_2.4/version-2.4.0.xml also indicates the build number.

Every MAJOR.MINOR version of a ModusToolbox™ product is installed by default into

<install_path>/ModusToolbox. So, if you have multiple versions of ModusToolbox™ software installed, they are

all installed in parallel in the same ModusToolbox directory, as follows:

1.4.3 Multiple tools versions installed

When you run make commands from the command line, a message displays if you have multiple versions of the

"tools" directory installed and if you have not specified a version to use.

User Guide 15 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Introduction

1.4.4 Specifying alternate tools version

By default, the ModusToolbox™ software uses the most current version of the tools directory installed. That is, if
you have ModusToolbox™ versions 2.3 and 2.4 installed, and if you launch the Eclipse IDE from the

ModusToolbox™ 2.3 installation, the IDE will use the tools from the "tools_2.4" directory to launch
configurators and build an application. This section describes how to specify the path to the desired version.

1.4.4.1 Environment variable

The overall way to specify a path other than the default "tools" directory, is to use a system variable named
CY_TOOLS_PATHS. On Windows, open the Environment Variables dialog, and create a new System/User

Variable:

Note: Use a Windows style path, (that is, not like /cygdrive/c/). Also, use forward slashes. For example:

C:/Users/XYZ/ModusToolbox/tools_2.3/

Use the appropriate method for setting variables in macOS and Linux for your system.

1.4.4.2 Specific project Makefile

To preserve a specific "tools" path for the specific project, edit that project’s Makefile, as follows:

If you install the IDE in a custom location, add the path to its

"tools_X.Y" folder (where X and Y are the version number of the tools

folder).

CY_TOOLS_PATHS+=C:/Users/XYZ/ModusToolbox/tools_2.3

1.4.5 Tools and configurators versioning

Every tool and configurator follow the standard versioning scheme and include a version.xml file that also
contains a build number.

1.4.5.1 Configurator messages

Configurators indicate if you are about to modify the configuration file (for example, design.modus) with a
newer version of the configurator, as well as if there is a risk that you will no longer be able to open it with the

previous version of the configurator:

User Guide 16 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Introduction

Configurators will also indicate if you are trying to open the existing configuration with a different, backward
and forward compatible version of the Configurator.

Note: If using the command line, the build system will notify you with the same message.

1.4.6 GitHub libraries versioning

GitHub libraries follow the same versioning scheme: MAJOR.MINOR.PATCH. The GitHub libraries, besides the
code itself, also provide two files in MD format: README and RELEASE. The latter includes the version and the
change history.

The versioning for GitHub libraries is implemented using GitHub tags. These tags are captured in the manifest
files (see the Manifest files chapter for more details). The Project Creator tool parses the manifests to determine
which BSPs and applications are available to select. The Library Manager tool parses the manifests and allow

you to see and select between various tags of these libraries. When selecting a particular library of a particular
version, the .mtb file gets created in your project. These .mtb files are a link to the specific tag. Refer to the

Library Manager user guide for more details about tags.

Once complete with initial development for your project, if using the git clone method to create the
application instead of the Project Creator tool, we recommend you switch to specific "release" tags. Otherwise,

running the make getlibs command will update the libraries referenced by the .mtb files, and will deliver the

latest code changes for the major version.

1.4.7 Dependencies between libraries

The following diagram shows the dependencies between libraries.

There are dependencies between the libraries. There are two types of dependencies:

core-lib.git

core-make.git

capsense.gitbsp.git

retarget-io.git

. . .

release XYZ

latest.release.XYZ
all tags MTB Manifests

Project

Creator

Library

Manager

Update

the tags

Application

bsp.mtb

core-lib.mtb

core-make.mtb

capsense.mtb

. . .

retarget-io.mtb

. . .

All point to

GitHub

GitHub

http://www.infineon.com/ModusToolboxLibraryManager

User Guide 17 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Introduction

1.4.7.1 Git repo dependencies via .mtb files

Dependencies for various libraries are specified in the manifest file. Only the top-level application will have
.mtb files for the libraries it directly includes.

1.4.7.2 Regular C dependencies via #include

Our libraries only call the documented public interface of other Libraries. Every library declares its version in
the header. The consumer of the library including the header checks if the version is supported, and will notify
via #error if the newer version is required. Examples of the dependencies:

• The Device Support library (PDL) driver is used by the Middleware.

• The configuration generated by the Configurator depends on the versions of the device support library

(PDL) or on the Middleware headers.

Similarly, if the configuration generated by the configurator of the newer version than you have installed, the
notification via the build system will trigger asking you to install the newer version of the ModusToolbox™

software, which has a fragmented distribution model. You are allowed and empowered to update libraries

individually.

1.5 Partner ecosystems

To support Infineon microcontrollers in our partner ecosystems, some tools and middleware from

ModusToolbox™ software are also integrated into Mbed OS and Amazon FreeRTOS. Refer to mbed.com and

aws.amazon.com/freertos, respectively, to learn more about developing applications in those environments.

http://www.mbed.com/
aws.amazon.com/freertos

User Guide 18 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Getting started

2 Getting started

ModusToolbox™ software provides various graphical user interface (GUI) and command-line interface (CLI)
tools to create and configure applications the way you want. You can use the included Eclipse-based IDE, which

provides an integrated flow with all the ModusToolbox™ tools. Or, you can use other IDEs or no IDE at all. Plus,

you can switch between GUI and CLI tools in various ways to fit your design flow. Regardless of what tools you
use, the basic flow for working with ModusToolbox™ applications includes these tasks:

• Install and configure software

• Get help

• Create applications

• Update BSPs and libraries

• Configure settings for devices, peripherals, and libraries

• Write application code

• Build, program, and debug

This chapter helps you get started using various ModusToolbox™ tools. It covers these tasks, showing both the
GUI and CLI options available.

2.1 Install and configure software

The ModusToolbox™ tools package is located on our website:

https://softwaretools.infineon.com/tools/com.ifx.tb.tool.modustoolbox

You can install the software on Windows®, Linux, and macOS. Refer to the ModusToolbox™ installation guide for

specific instructions.

2.1.1 GUI set-up instructions

In general, the IDE and other GUI-based tools included as part of the ModusToolbox™ tools package work out of

the box without any changes required. Simply launch the executable for the applicable GUI tool. On Windows,

most tools are on the Start menu.

2.1.2 CLI set-up instructions

Before using the CLI tools, ensure that the environment is set up correctly.

• For Windows, the tools package provides a command-line utility called "modus-shell." You can run this

from the Start menu, or navigate to the following installation directory and run Cygwin.bat :

<install_path>/ModusToolbox/tools_2.4/modus-shell/

• For macOS, the installer will detect if you have the necessary tools. If not, it will prompt you to install them

using the appropriate Apple system tools.

• For Linux, there is only a ZIP file, and you are expected to understand how to set up various tools for your

chosen operating system.

To check your installation, open the appropriate command-line shell.

• Type which make. For most environments, it should return /usr/bin/make.

• Type which git. For most environments, it should return /usr/bin/git.

https://softwaretools.infineon.com/tools/com.ifx.tb.tool.modustoolbox
http://www.infineon.com/ModusToolboxInstallGuide

User Guide 19 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Getting started

If these commands return the appropriate paths, then you can begin using the CLI. Otherwise, install and
configure the GNU make and git packages as appropriate for your environment.

2.2 Get help

In addition to this user guide, we provide documentation for both GUI and CLI tools. GUI tool documentation is
generally available from the tool’s Help menu. CLI documentation is available using the tool’s -h option.

2.2.1 GUI Ddocumentation

2.2.1.1 Eclipse IDE

If you choose to use the integrated Eclipse IDE, see the Eclipse IDE for ModusToolbox™ quick start guide for

getting started information, and the Eclipse IDE for ModusToolbox™ user guide for additional details.

2.2.1.2 Configurator and tool guides

Each GUI-based configurator and tool includes a user guide that describes different elements of the tool, as
well as how to use them. See Installation resources for descriptions of these tools and links to the

documentation.

2.2.2 Command line documentation

2.2.2.1 make help

The ModusToolbox™ build system includes a make help target that provides help documentation. In order to

use the help, you must first run the make getlibs command in an application directory (see make getlibs for
details). From the appropriate shell in an application directory, type in the following to print the available make
targets and variables to the console:

make help

To view verbose documentation for any of these targets or variables, specify them using the CY_HELP variable.

For example:

make help CY_HELP=TOOLCHAIN

Note: This help documentation is part of the base library, and it may also contain additional information
specific to a BSP.

To see the various make targets and variables available, see the Available make targets and Available make
variables sections in the ModusToolbox™ build system chapter.

http://www.infineon.com/ModusToolboxQSG
https://www.infineon.com/MTBEclipseIDEUserGuide

User Guide 20 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Getting started

2.2.2.2 CLI tools

Various CLI tools include a -h option that prints help information to the screen about that tool. For example,
running this command prints output for the Project Creator CLI tool to the screen:

./project-creator-cli -h

2.3 Create applications

ModusToolbox™ software provides the Project Creator as both a GUI tool and a command line tool to easily
create one or more ModusToolbox™ applications. See Project Creator tools. If you prefer not to use the Project

Creator tools, you can use the git clone command directly. See git clone. However, be sure to also run the
make getlibs command in the application directory. See make getlibs. You can then use those application

files in your preferred IDE or from the command line.

Note: Beginning with the ModusToolbox™ 2.2 release, we structure applications with the MTB flow. Using
this flow, applications can share BSPs and libraries. If needed, different applications can use
different versions of the same BSP/library. Sharing resources reduces the number of files on your

computer and speeds up subsequent application creation time. Shared BSPs, libraries, and
versions are located in the mtb_shared directory adjacent to your application directories. You can
easily switch a shared BSP or library to become local to a specific application, or back to being

shared. Refer to the Library Manager User Guide for details.

Looking ahead, most example applications will use the MTB flow. However, there are still various applications
that use the previous flow, now called the LIB flow, and these applications generally do not share BSPs and
libraries. ModusToolbox™ software fully supports both flows, but it only supports one flow or the other for a

given application.

For simplicity, this guide focuses on the MTB flow. For details about how the LIB flow works, refer to the

ModusToolbox™ 2.1 revision of this guide, located here:

https://www.cypress.com/file/504361/download

https://www.infineon.com/ModusToolboxLibraryManager
https://www.cypress.com/file/504361/download

User Guide 21 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Getting started

2.3.1 Project Creator tools

The Project Creator tools run the git clone command for the selected code example(s) and create a directory
at the specified location with the specified name. The tools also updates the application Makefile and create a

<BSP-NAME>.mtb file based on the specified BSP. That .mtb file contains the following:

• The URL of the git repo where the BSP contents can be found.

• The commit (version of the library) to checkout / make visible / use in the application.

• A variable of where to put the BSP on disk (shared or local to the application).

The Project Creator tools then run the make getlibs command to read the BSP manifest file, resolve
dependencies, and import libraries. Depending on the settings in the application and manifest, the tools put
everything into application directories and an mtb_shared directory. In most cases, BSPs are placed local to the

application, while libraries are shared.

2.3.1.1 Project Creator GUI

The Project Creator GUI tool provides a series of screens to select a BSP and code example, specify the

application name and location, as well as select target IDE. The tool displays various messages during the

application creation process. Refer to the Project Creator user guide for more details. Open the Project Creator
GUI tool from the Windows Start menu or by running the executable file installed in the following directory by

default:

<install_path>/ModusToolbox/tools_2.4/project-creator/

The option to select a target IDE generates necessary files for that IDE. If you launch the Project Creator GUI tool
from the included Eclipse-based IDE, it seamlessly exports the created application for use in the Eclipse IDE.

2.3.1.2 project-creator-cli

You can also use the project-creator-cli tool to create applications from a command-line prompt or from within

batch files or shell scripts. The tool is located in the same directory as the GUI version
(<install_path>/ModusToolbox/tools_2.4/project-creator/). To see all the options available, run the tool with the
-h option:

./project-creator-cli -h

http://www.infineon.com/ModusToolboxProjectCreator

User Guide 22 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Getting started

The following example shows running the tool with various options.

./project-creator-cli \

 --board-id CY8CKIT-062-WIFI-BT \

 --app-id mtb-example-psoc6-hello-world \

 --user-app-name MyLED \

 --target-dir "C:/my_projects"

In this example, the project-creator-cli tool runs the git clone command to clone the Hello World code
example from our GitHub server (https://github.com/Infineon). It also updates the TARGET variable in the
Makefile to match the selected BSP (--board-id), creates a .mtb file for it, and runs the make getlibs
command to obtain the necessary library files. This example also includes options to specify the name (--

user-app-name) and location (--target-dir) where the application will be stored.

2.3.2 git clone

The Project Creator GUI and command line tools run the git clone command as part of the process of

creating an application. You can run the git clone command directly from the command line. Open the
appropriate shell and type in the following command (replace the <URL> with the appropriate URL of the repo

you wish to clone):

git clone <URL>

The clone operation creates an application directory in your current location. Navigate to that directory (cd

<DIR>), and find the application Makefile. This is the top-level file that determines the application build flow.
To see the various make targets and variables that you can edit in this file, refer to the Available make targets
and Available make variables sections in the ModusToolbox™ build system chapter.

Note: When using the git clone command directly, be sure to also run the make getlibs command

in the application directory. See make getlibs. Also, each code example has a default BSP included
in the application's deps subdirectory. If you want to use a different BSP, you must create a .mtb

file for it in the deps subdirectory before running make getlibs, and you must change the
TARGET variable in the Makefile.

Note: The git clone command does not automatically lock the libraries to the latest versions.
Therefore, when you use make getlibs in future updates, your libraries may be updated to

newer versions. You can use Library Manager to manually lock the library versions.

https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software

User Guide 23 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Getting started

2.3.3 Typical application contents

After an application has been created for the MTB flow and all the libraries have been imported, it contains the
following basic files and directories as shown in the following image:

2.3.3.1 Application directory

This directory contains the application source code, Makefile, readme file, as well as the deps and libs

subdirectories. If you create multiple applications, there will be multiple application directories contained in

the same directory structure or workspace.

• Source code – This is one or more files for your application’s code. Often it is named main.c, but it could be
more than one file and the files could have almost any name. Source code files can also be grouped into a

subdirectory anywhere in the application's directory (for example, sources/main.c).

• Makefile – This is the application’s Makefile, which contains configuration information. See the

ModusToolbox™ build system chapter for more details.

• deps subdirectory – By default, this subdirectory contains .mtb files using the MTB flow.

• Initially, this subdirectory contains only the <BSP>.mtb file for the BSP you selected for the application.

• It could also contain <library>.mtb files for libraries that were included directly or for which you

changed using the Library Manager. See the Update BSPs and libraries section for details.

• This subdirectory also contains the locking_commit.log file, which keeps track of the version for each

dependent library.

• libs subdirectory – This subdirectory may contain different types of files generated by the make getlibs

process, based on how the application is created. You can regenerate these files using the make getlibs

command, so you do not need to add these files to source control.

• This subdirectory contains BSPs that are local to the application (that is, not shared).

• If you update your application to specify any libraries to be local as well, then this directory will also

contain source code for those libraries.

• By default, this subdirectory contains the <library>.mtb files for libraries included as indirect

dependencies of the BSP or other libraries.

• This directory also contains the mtb.mk file that lists the shared libraries and their versions.

User Guide 24 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Getting started

2.3.3.2 mtb_shared directory

Typically, a new application also includes a mtb_shared directory adjacent to the application directory, and this
is where the shared BSP and libraries are cloned by default. This location can be modified by specifying the

CY_GETLIBS_PATH variable. Duplicate libraries are checked to see if they point to the same commit and if so,
only one copy is kept in the mtb_shared directory. You can regenerate these files using the make getlibs
command, so you do not need to add these files to source control.

2.4 Update BSPs and libraries

As part of the application creation process, the Project Creator tools update the application with BSP and

library information. If you use the git clone command, you will have to update BSP and library information
as a separate process using the Library Manager tool or from the command line using the make getlibs

command. You can also update the BSP and library information at any point in the development cycle using

these tools.

2.4.1 Library Manager

As needed, use the Library Manager tool to add or remove BSPs and libraries for your application, as well as
change versions for BSPs and libraries. You can also change the active BSP. Open the Library Manager tool from

the application directory using the make modlibs command.

The Library Manager opens for the selected application and its available BSPs and libraries.

Note: There are several ways to open the Library Manager; refer to the Library Manager user guide for
more details.

http://www.infineon.com/ModusToolboxLibraryManager

User Guide 25 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Getting started

The Library Manager tool provides a field to select the Active BSP. It also includes two tabs to view and update
BSPs and Libraries.

Make changes to BSPs and libraries as follows:

• Select one or more check boxes under Name for the items to add. Deselect check boxes for items to

remove.

• Specify whether items are shared (placed in the mtb_shared directory) or local to the application (placed in

the libs subdirectory) by selecting/deselecting the Shared check box.

• Choose an appropriate Version for each item.

Click Update to proceed with the changes. The status box displays various messages while applying changes,

and then indicates if the application was updated or not.

User Guide 26 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Getting started

2.4.2 make getlibs

In the MTB flow, the Project Creator tools and the Library Manager tool run the make getlibs command to
search for all .mtb files in the application directory. Each .mtb file contains information used when the

application is created. These files are parsed, and the libraries are cloned into a directory named mtb_shared.

If you ran the git clone command manually and did not use the Library Manager, then your application will
contain only default .mtb files. You must run the make getlibs command to parse those files and clone the

libraries. However, if you want to use to a different BSP than the default provided by the code example, you
must first edit the Makefile to update the TARGET variable to match the desired BSP. Then, you must add a .mtb
file in the /deps subdirectory that includes a URL to the desired BSP location.

Note: ModusToolbox™ applications that use the LIB flow contain.lib files in the deps subdirectory. If an

application uses the MTB flow, then all .lib files are ignored.

When you are ready to update your application, open the appropriate shell (see CLI set-up instructions) and run
the following command in the application directory:

make getlibs

Note: The make getlibs operation may take a long time to execute as it depends on your internet

speed and the size of the libraries that it is cloning. To improve subsequent library cloning
operations, a cache directory named ".modustoolbox/cache" exists in the $HOME (Linux, macOS)
and $USERPROFILE (Windows) directories.

2.5 Configure settings for devices, peripherals, and libraries

Depending on your application, you may want to update and generate some of the configuration code. While it

is possible to write configuration code from scratch, the effort to do so is considerable. ModusToolbox™
software provides applications called configurators that make it easier to configure a hardware block or a

middleware library. For example, instead of having to search through all the documentation to configure a
serial communication block as a UART with a desired configuration, open the appropriate configurator to set
the baud rate, parity, stop bits, etc.

Before configuring your device, you must decide how your application will interact with the hardware; see
Application layers. That decision affects how you configure settings for devices, peripherals, and libraries.

Note: Before you make changes to settings in configurators, you should first copy the configuration
information to the application and override the BSP configuration or create a custom BSP. See

details about BSPs in the Board support packages chapter. If you make changes to a standard
BSP library, it will cause the repo to become dirty. Additionally, if the BSP is in the shared asset

repository, changes will impact all applications that use the shared BSP. If this happens, refer to
KBA231252.

The configurators can be run as GUIs to easily update various parameters and settings. Most can also be run as
command line tools to regenerate code as part of a script. For more information about configurators, see the
Configurators section. Also, each configurator provides a separate document, available from the configurator's

Help menu, that provides information about how to use the specific configurator.

https://community.cypress.com/docs/DOC-21498

User Guide 27 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Getting started

2.5.1 Configurator GUI tools

You can open various configurator GUIs using the appropriate make command from the application directory.
For example, to open the Device Configurator, run:

make config

This opens the Device Configurator with the current application’s design.modus configuration file.

As described under Tools make targets, you can use the make open command with appropriate arguments to
open any configurator. For example, to open the CAPSENSE™ Configurator, run:

make open CY_OPEN_TYPE=capsense-configurator

You can also use the Eclipse IDE provided with ModusToolbox™ software to open configurators. For example, if
you select the "Device Configurator" link in the IDE Quick Panel, the tool opens with the application’s
design.modus file. Refer to the Eclipse IDE for ModusToolbox™ user guide for more details about the Eclipse IDE.

One other way to open BSP configurators (such as CAPSENSE™ and SegLCD Configurators) is by using a link
from inside the Device Configurator. However, this does not apply to Library configurators (such as Bluetooth®

and USB Configurators).

2.5.2 Configurator CLI tools

Most of the configurators can also be run from the command line. The primary use case is to re-generate source
code based on the latest configuration settings. This would often be part of an overall build script for the entire

application. The command-line configurator cannot change configuration settings. For information about
command line options, run the configurator using the -h option.

https://www.infineon.com/MTBEclipseIDEUserGuide

User Guide 28 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Getting started

2.6 Write application code

As in any embedded development application using any set of tools, you are responsible for the design and
implementation of the firmware. This includes not just low-level configuration and power mode transitions, but

all the unique functionality of your product. When writing application code, you must decide how the
application will interact with the hardware; see Application layers.

ModusToolbox™ software is designed to enable your workflow. It includes an integrated Eclipse IDE, as well as

support for Visual Studio (VS) Code, IAR Embedded Workbench, and Keil µVision (see Exporting to supported
IDEs). You can also use a text editor and command line tools. Taken together, the multiple resources available
to you in ModusToolbox™ software: BSPs, configurators, driver libraries, and middleware, help you focus on

your specific application.

2.6.1 Application layers

There are four distinct ways for an application to interact with the hardware as shown in the following diagram:

• HAL structures: Application code uses the HAL, which interacts with the PDL through structures created by

the HAL

• Configurator structures: Application code uses PDL through structures created by a Configurator.

• Manual structures: Application code uses PDL through structures created manually.

• Register read/write: Application code uses direct register read and writes.

Note: A single application may use different methods for different peripherals.

2.6.1.1 HAL

Using the HAL is more portable than the other methods. It is the preferred method for simpler functions and

those that don't have extremely strict flash size limitations. It is a high-level interface to the hardware that

allows many common functions to be done quickly and easily. This allows the same code to be used even if
there are changes to pin assignments, different devices in the same family, or even to a different family that

may have radically different underlying architectures. For more details, refer to HAL on GitHub.

The advantages include:

• Easy hardware changes. Just change the pin assignment in the BSP and the code remains the same. For
example, if LED1 changes from P0_0 to P0_1, the code remains the same as long as the code uses the name

LED1 with the HAL. The only change is to the BSP pin assignment.

Hardware

User Application

HAL

PDL

HAL Structures

PDL PDL

Configurator Structures Manual Structures Register Read/Write

https://infineon.github.io/psoc6hal/html/index.html

User Guide 29 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Getting started

• Easy migration to a different device as product requirements change.

• Ability to use the same code base across multiple projects and generations, even if underlying architectures

are different.

The disadvantages include:

• The HAL may not support every feature that the hardware has. It supports the most common features but

not all of them to maintain simplicity.

• The HAL will use additional flash space. The additional flash depends on which HAL APIs are used.

2.6.1.2 PDL

The PDL is a lower-level interface to the hardware (but still simpler than direct register access) that supports all

hardware features. Usually the PDL goes hand-in-hand with Configurators, which will be described next. Since
the PDL interacts with the hardware at a lower level it is less portable between devices, especially those with

different architectures. For more details, refer to PDL on GitHub.

The advantages/disadvantages are the exact opposite of those for the HAL. The main advantage is that it

provides access to every hardware feature.

2.6.1.3 Configurators

Configurators make initial setup easier for hardware accessed using the PDL. The Configurators create

structures that the PDL requires without you needing to know the exact composition of each structure, and
they create the proper structure based on your selections. See Configurators for more information.

If you use the HAL for a peripheral, it will create the necessary structures for you, so you should NOT use a

Configurator to set them up. The HAL structure is accessible, and once you initialize a peripheral with the HAL
you can view and even modify that structure (that is, a HAL object). The underlying structures are hardware-

specific, so you may be sacrificing portability if you modify the structure manually. There are a few exceptions.
For example, it is reasonable to configure system items (such as clocks) and use them with the HAL.

2.7 Build, program, and debug

After the application has been created, you can export it to an IDE of your choice for building, programming,

and debugging. You can also use command line tools. The ModusToolbox™ build system infrastructure
provides several make variables to control the build. So, whether you are using an IDE or command line tools,
you edit the Makefile variables as appropriate. See the ModusToolbox™ build system chapter for detailed

documentation on the build system infrastructure.

Variable Description

TARGET Specifies the target board/kit. For example, CY8CPROTO-062-4343W

APPNAME Specifies the name of the application

TOOLCHAIN Specifies the build tools used to build the application

CONFIG Specifies the configuration option for the build [Debug Release]

VERBOSE Specifies whether the build is silent or verbose [true false]

ModusToolbox™ software is tested with various versions of the TOOLCHAIN values listed in the following table.
Refer to the release information for each product for specific versions of the toolchains.

TOOLCHAIN Tools Host OS

GCC_ARM GNU Arm Embedded Compiler Mac OS, Windows, Linux

https://infineon.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html

User Guide 30 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Getting started

ARM Arm compiler Windows, Linux

IAR Embedded Workbench Windows

In the Makefile, set the TOOLCHAIN variable to the build tools of your choice. For example:
TOOLCHAIN=GCC_ARM. There are also variables you can use to pass compiler and linker flags to the toolchain.

ModusToolbox™ software installs the GNU Arm toolchain and uses it by default. If you wish to use another
toolchain, you must provide it and specify the path to the tools. For example,
CY_COMPILER_PATH=<yourpath>. If this path is blank, the build infrastructure looks in the ModusToolbox/

install directory.

2.7.1 Use Eclipse IDE

When using the provided Eclipse IDE, click the Build Application link in the Quick Panel for the selected

application.

Because the IDE relies on the build infrastructure, it does not use the standard Eclipse GUI to modify build

settings. It uses the build options specified in the Makefile. This design ensures that the behavior of the

application, its options, and the make process are consistent regardless of the development environment and

workflow.

If you do change settings in the Makefile (for example, TARGET or CONFIG), you must re-create the launch
configs using the link in the Quick Panel; refer to the Eclipse IDE for ModusToolbox™ user guide for more

details.

2.7.2 Export to another IDE

If you prefer to use an IDE other than Eclipse, you can select the appropriate IDE from the Target IDE pull-down
menu when creating an application using the Project Creator tool. You can also use the appropriate make

<ide> command. For example, to export to Visual Studio Code, run:

make vscode

For more details about using other IDEs, see the Exporting to supported IDEs chapter. When working with a

different IDE, you must manage the build using the features and capabilities of that IDE.

2.7.3 Use command line

2.7.3.1 make build

When all the libraries are available (after executing make getlibs), the application is ready to build. From the
appropriate shell, type the following:

make build

https://www.infineon.com/MTBEclipseIDEUserGuide

User Guide 31 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Getting started

This instructs the build system to find and gather the source files in the application and initiate the build
process. In order to improve the build speed, you may parallelize it by giving it a -j flag (optionally specifying

the number of processes to run). For example:

make build -j16

2.7.3.2 make program

Connect the target board to the machine and type the following in the shell:

make program

This performs an application build and then programs the application artifact (usually an .elf or .hex file) to the
board using the recipe-specific programming routine (usually OpenOCD). You may also skip the build step by

using qprogram instead of program. This will program the existing build artifact.

2.7.3.3 make debug/qdebug/attach

The following commands can be used to debug the application, as follows:

• make debug – Build and program the board. Then launch the GDB server.

• make qdebug – Skip the build and program steps. Just launch the GDB server.

• make attach – Starts a GDB client and attaches the debugger to the running target.

User Guide 32 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

ModusToolbox™ build system

3 ModusToolbox™ build system

This chapter covers various aspects of the ModusToolbox™ build system. Refer to CLI set-up instructions for
getting started information about using the command line tools. This chapter is organized as follows:

• Overview

• Application types

• BSPs

• make getlibs

• Adding source files

• Pre-builds and post-builds

• Program and debug

• Available make targets

• Available make variables

3.1 Overview

The ModusToolbox™ build system is based on GNU make. It performs application builds and provides the logic
required to launch tools and run utilities. It consists of a light and accessible set of Makefiles deployed as part of

every application. This structure allows each application to own the build process, and it allows environment-

specific or application-specific changes to be made with relative ease. The system runs on any environment

that has the make and git utilities. For a "how to" document about the ModusToolbox™ Makefile system, refer
to https://community.cypress.com/docs/DOC-18994. Also, as described in the Getting started chapter, you can
run the make help command to get details on the various targets and variables available.

The ModusToolbox™ command line interface (CLI) and supported IDEs all use the same build system. Hence,
switching between them is fully supported. Program/Debug and other tools can be used in either the command

line or an IDE environment. In all cases, the build system relies on the presence of ModusToolbox™ tools
included with the ModusToolbox™ installer.

The tools contain a start.mk file that serves as a reference point for setting up the environment before
executing the recipe-specific build in the base library. The file also provides a getlibs make target that brings
libraries into an application. Every application must then specify a target board on which the application will

run. These are provided by the <BSP>.mk files deployed as a part of a BSP library.

The majority of the Makefiles are deployed as git repositories (called "repos"), in the same way that libraries are

deployed in the ModusToolbox™ software. There are two separate repos: core-make used by all recipes and a
recipe-make-xxx that contains BSP/target specific details. These are the minimum required to enable an

application build. Together, these Makefiles form the build system.

3.2 Application types

The build system supports the following application types:

• Normal application – The application consists of one application Makefile. The build process creates one

artifact. All prebuilt libraries are brought in at link time. A normal application is constructed by defining the

APPNAME variable in the application Makefile.

• Library application – The application consists of one application Makefile. The sources are built into a

library. These libraries may be linked in as part of a Normal application build. A library application is

constructed by defining the LIBNAME variable in the application Makefile.

https://community.cypress.com/docs/DOC-18994

User Guide 33 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

ModusToolbox™ build system

The library applications are usually placed as companions to normal applications. These normal applications
specify their dependency on library applications by including them in the DEPENDENT_LIB_PATHS make

variable. They also drive the build process of the library applications by defining a shared_libs make target.

For example:

DEPENDENT_LIB_PATHS=../bspLib

shared_libs:

 make -C ../bspLib build -j

3.3 BSPs

An application must specify a target BSP through the TARGET variable in the Makefile. We provide reference

BSPs for its development kits. Use these as a reference to construct your own BSP. For more information about
BSPs, refer to the Board support packages chapter.

• When using the Project Creator to create an application, it provides the selected BSP and updates the

Makefile.

• Use the Library Manager to add, update, or remove a BSP from an application. You can also add a .mtb file

that contains the URL and a version tag of interest in the application.

3.4 make getlibs

When you run the make getlibs command, the build system finds all the .mtb files in the application
directory and performs git clone operations on them. A .mtb file contains a git URL to a library repo, a

specific tag for a version of the code, and a variable to specify the location to store the library.

The getlibs target finds and processes all .mtb files and uses the git command to clone or pull the code as

appropriate. The target also calls the library-manager-cli tool to generate .mtb files for indirect dependencies.

Then, it checks out the specific tag listed in the .mtb file. The Project Creator and Library Manager invoke this
process automatically.

• The getlibs target must be invoked separately from any other make target (for example, the command
make getlibs build is not allowed and the Makefiles will generate an error; however, a command such

as make clean build is allowed).

• The getlibs target performs a git fetch on existing libraries but will always checkout the tag pointed to

by the overseeing .mtb file.

• The getlibs target detects if users have modified standard code and will not overwrite their work. This

allows you to perform some action (for example commit code or revert changes, as appropriate) instead of

overwriting the changes.

The build system also has a printlibs target that can be used to print the status of the cloned libraries.

3.4.1 repos

The cloned libraries are located in their individual git repos in the directory pointed to by the

CY_GETLIBS_PATH variable (for example, /deps). These all point to the "our" remote origin. You can point your

repo by editing the .git/config file or by running the git remote command.

If the repos are modified, add the changes to your source control (git branch is recommended). When make
getlibs is run (to either add new libraries or update libraries), it requires the repos to be clean. You may also
use the .gitignore file for adding untracked files when running make getlibs. See also KBA231252.

https://community.cypress.com/docs/DOC-21498

User Guide 34 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

ModusToolbox™ build system

3.5 Adding source files

Source and header files placed in the application directory hierarchy are automatically added by the auto-
discovery mechanism. Similarly, library archives and object files are automatically added to the application.

Any object file not referenced by the application is discarded by the linker. The Project Creator and Library
Manager tools run the make getlibs command and generate a mtb.mk file in the application's libs
subdirectory. This file specifies the location of shared libraries included in the build.

The application Makefile can also include specific source files (SOURCES), header file locations (INCLUDES) and
prebuilt libraries (LDLIBS). This is useful when the files are located outside of the application directory
hierarchy or when specific sources need to be included from the filtered directories.

3.5.1 Auto-discovery

The build system implements auto-discovery of library files, source files, header files, object files, and pre-built
libraries. If these files follow the specified rules, they are guaranteed to be brought into the application build
automatically. Auto-discovery searches for all supported file types in the application directory hierarchy and

performs filtering based on a directory naming convention and specified directories, as well as files to ignore. If
files external to the application directory hierarchy need to be added, they can be specified using the SOURCES,
INCLUDES, and LIBS make variables.

Auto-discovery of source code (source and headers) has no depth limit (it uses the "find" tool). Auto-discovery
of other types of files do have a depth limit, including:

• .mtb file depth

• .mk file of the selected TARGET

• device support library discovery

• configurator file discovery

The default depth limit for these files is five directories deep. They can be changed to up to nine directories
deep by setting the following options in the Makefile:

CY_UTILS_SEARCH_DEPTH=9

CY_LIBS_SEARCH_DEPTH=9

To control which files are included/excluded, the build system implements a filtering mechanism based on
directory names and .cyignore files.

3.5.1.1 .cyignore

Prior to applying auto-discovery and filtering, the build system will first search for .cyignore files and construct

a set of directories and files to exclude. It contains a set of directories and files to exclude, relative to the
location of the .cyignore file. The .cyignore file can contain make variables. For example, you can use the

SEARCH_ variable to exclude code from other libraries as shown for the "Test" directory in a library called
<library-name>:

$(SEARCH_<library-name>/Test

The CY_IGNORE variable can also be used in the Makefile to define directories and files to exclude.

Note: The CY_IGNORE variable should contain paths that are relative to the application root.
For example, ./src1.

User Guide 35 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

ModusToolbox™ build system

3.5.1.2 TOOLCHAIN_<NAME>

Any directory that has the prefix "TOOLCHAIN_" is interpreted as a directory that is toolchain specific. The
"NAME" corresponds to the value stored in the TOOLCHAIN make variable. For example, an IAR-specific set of

files is located under a directory named TOOLCHAIN_IAR. Auto-discovery only includes the TOOLCHAIN_<NAME>
directories for the specified TOOLCHAIN. All others are ignored. ModusToolbox™ supports IAR, ARM, and

GCC_ARM.

3.5.1.3 TARGET_<NAME>

Any directory that has the prefix "TARGET_" is interpreted as a directory that is target specific. The "NAME"
corresponds to the value stored in the TARGET make variable. For example, a build with TARGET=CY8CPROTO-

062-4343W ignores all TARGET_ directories except TARGET_CY8CPROTO-062-4343W.

Note: The TARGET_ directory is often associated with the BSP, but it can be used in a generic sense. E.g.
if application sources need to be included only for a certain TARGET, this mechanism can be used
to achieve that.

Note: The output directory structure includes the TARGET name in the path, so you can build for target A
and B and both artifact files will exist on disk.

3.5.1.4 CONFIG_<NAME>

Any directory that has the prefix "CONFIG_" is interpreted as a directory that is configuration (Debug/Release)
specific. The "NAME" corresponds to the value stored in the CONFIG make variable. For example, a build with

CONFIG=CustomBuild ignores all CONFIG_ directories, except CONFIG_CustomBuild.

Note: The output directory structure includes the CONFIG name in the path, so you can build for config A

and B and both artifact files will exist on disk.

3.5.1.5 COMPONENT_<NAME>

Any directory that has the prefix "COMPONENT_" is interpreted as a directory that is component specific. The
"NAME" corresponds to the value stored in the COMPONENT make variable. For example, consider an application
that sets COMPONENTS+=comp1. Also assume that there are two directories containing component-specific
sources:

COMPONENT_comp1/src.c

COMPONENT_comp2/src.c

Auto-discovery will only include COMPONENT_comp1/src.c and ignore COMPONENT_comp2/src.c. If a specific
component needs to be removed, either delete it from the COMPONENTS variable or add it to the
DISABLE_COMPONENTS variable.

3.5.1.6 BSP makefile

Auto-discovery will also search for a <TARGET>.mk file (aka, BSP makefile). If no matching BSP makefile is
found, it will fail to build. This file can also be manually specified by setting it in the CY_EXTRA_INCLUDES
variable.

User Guide 36 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

ModusToolbox™ build system

3.5.1.7 Multi-project application with imported BSP

When you use an imported BSP to create a multi-project application, the system copies the BSP into an
application root folder. For these types of applications, the Project Creator tool creates an importedbsp.mk file

for each project with a SEARCH variable and relative path to the imported BSP. For example:

SEARCH+=<relative_path_to_BSP_folder>

If you do not use the Project Creator tool, you must create the files manually in each project directory.

In addition, when make getlibs is run, it updates the mtb.mk file with the following line:

-include ${CY_INTERNAL_APP_PATH}/importedbsp.mk

The "-" in front of "include" tells the make system to perform a conditional include. It only includes the file if it

exists. If the file doesn't exist, the system does not issue a warning.

3.6 Pre-builds and post-builds

A pre-build or post-build operation is typically a script file invoked by the build system. Such operations are

possible at several stages in the build process. They can be specified at the application, BSP, and recipe levels.

You can pre-build and post-build arguments in the application Makefile. For example:

PREBUILD=command -arg1 -arg2

If you want to run more than one command, separate them with a semicolon (;). For example:

PREBUILD=command1 -arg1; command2 -arg1 -arg2

The sequence of execution in a build is as follows:

1. BSP pre-build – Defined using CY_BSP_PREBUILD variable.

2. Application pre-build – Defined using PREBUILD variable.

3. Source generation – Defined using CY_RECIPE_GENSRC variable.

4. Recipe pre-build – Defined using CY_RECIPE_PREBUILD variable.

5. Source compilation and linking.

6. Recipe post-build – Defined using CY_RECIPE_POSTBUILD variable.

7. BSP post-build – Defined using CY_BSP_POSTBUILD variable.

8. Application post-build – Defined using POSTBUILD variable.

The variable value is the relative path to the script to be executed.

Note: Pre-builds happen after the auto-discovery process. Therefore, if the pre-build steps generate any
source files to be included in a build, they will not be automatically included until the subsequent

build. In this scenario, this step should use the $(shell) function directly in the application

Makefile instead of using the provided pre-build make variables. For example:

$(shell bash ./custom_gen.sh ARG1 ARG2)

User Guide 37 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

ModusToolbox™ build system

3.7 Program and debug

The programming step can be done through the CLI by using the following make targets:

• program – Build and program the board.

• qprogram – Skip the build step and program the board.

• debug – Build and program the board. Then launch the GDB server.

• qdebug – Skip the build and program steps. Just launch the GDB server.

• attach – Starts a GDB client and attaches the debugger to the running target.

For CLI debugging, the attach target must be run on a separate shell instance. Use the GDB commands to

debug the application.

3.8 Available make targets

A make target specifies the type of function or activity that the make invocation executes. The build system
does not support a make command with multiple targets. Therefore, a target must be called in a separate make
invocation. The following tables list and describe the available make targets for all recipes.

3.8.1 General make targets

Target Description

all Same as build. That is, builds the application.

This target is equivalent to the build target.

getlibs Clones the repositories and checks out the identified commit.

The repos are cloned to the libs directory. By default, this directory is created in the application directory.

It may be directed to other locations using the CY_GETLIBS_PATH variable.

build Builds the application.

The build process involves source auto-discovery, code-generation, pre-builds, and post-builds. For faster

incremental builds, use the qbuild target to skip the auto-discovery step.

qbuild Quick builds the application using the previous build's source list.

When no other sources need to be auto-discovered, this target can be used to skip the auto-discovery

step for a faster incremental build.

program Builds the artifact and programs it to the target device.

The build process performs the same operations as the build target. Upon successful completion, the

artifact is programmed to the board.

qprogram Quick programs a built application to the target device without rebuilding.

This target allows programming an existing artifact to the board without a build step.

debug Builds and programs. Then launches a GDB server.

Once the GDB server is launched, another shell should be opened to launch a GDB client.

qdebug Skips the build and program step and does Quick Debug; that is, it launches a GDB server.

Once the GDB server is launched, another shell should be opened to launch a GDB client.

attach Starts a GDB client and attaches the debugger to the running target.

clean Cleans the /build/<TARGET> directory.

The directory and all its contents are deleted from disk.

help Prints the help documentation.

Use the CY_HELP=<name of target or variable> to see the verbose documentation for a given

target or a variable.

User Guide 38 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

ModusToolbox™ build system

3.8.2 IDE make targets

Target Description

eclipse Generates Eclipse IDE launch configs and project files.

This target expects the CY_IDE_PRJNAME variable to be set to the name of the application as defined

in the Eclipse IDE. For example, make eclipse CY_IDE_PRJNAME=AppV1. If this variable is not

defined, it will use the APPNAME for the launch configs. This target also generates .cproject and .project

files if they do not exist in the application root directory.

Note: Project generation requires Python 3 to be installed and present in the PATH variable.

Note: To skip project creation and only create the launch configs, set CY_MAKE_IDE=eclipse.

vscode Generates VS Code IDE json files.

This target generates VS Code json files for debug/program launches, IntelliSense, and custom tasks.

These overwrite the existing files in the application directory except for settings.json.

ewarm8 Generates IAR-EW version 8 IDE .ipcf file.

This target requires you to also set TOOLCHAIN=IAR. It generates an IAR Embedded Workbench v8.x

compatible .ipcf file that can be imported into IAR-EW. The .ipcf file is overwritten every time this target is

run.

Note: Application generation requires Python 3 to be installed and present in the PATH variable.

uvision5 Generates Keil µVision v5 IDE .cpdsc, .gpdsc, and .cprj files.

This target requires you to also set TOOLCHAIN=ARM. It generates a CMSIS compatible .cpdsc and

.gpdsc files that can be imported into Keil µVision v5. Both files are overwritten every time this target is

run.

Note: Application generation requires Python 3 to be installed and present in the PATH variable.

3.8.3 Tools make targets

Target Description

open Opens/launches a specified tool. This is intended for use by the Eclipse IDE. Use make config,

config_bt, or config_usbdev instead.

This target accepts two variables: CY_OPEN_TYPE and CY_OPEN_FILE. At least one of these

must be provided. The tool can be specified by setting the CY_OPEN_TYPE variable. A specific file

can also be passed using the CY_OPEN_FILE variable. If only CY_OPEN_FILE is given, the build

system will launch the default tool associated with the file’s extension.

Supported types are: bt-configurator capsense-configurator capsense-tuner
device-configurator dfuh-tool library-manager project-creator qspi-

configurator seglcd-configurator smartio-configurator usbdev-

configurator.

modlibs Launches the library-manager executable for updating libraries.

The Library Manager can be used to add/remove libraries and to upgrade/downgrade existing

libraries.

config Runs the Device Configurator on the target *.modus file.

If no existing device-configuration files are found, the configurator is launched to create one.

config_bt Runs the Bluetooth® Configurator on the target *.cybt file.

If no existing bt-configuration files are found, the configurator is launched to create one.

config_usbdev Runs the USB Configurator on the target *.cyusbdev file.

If no existing usbdev-configuration files are found, the configurator is launched to create one.

config_secure Runs the "Secure Policy" Configurator.

This configurator is intended only for devices that support secure provisioning.

User Guide 39 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

ModusToolbox™ build system

Target Description

config_ezpd Runs the EZ-PD™ Configurator.

If no existing ez-pd-configuration files are found, the configurator is launched to create one.

config_lin Runs the LIN configurator.

If no existing lin-configuration files are found, the configurator is launched to create one.

3.8.4 Utility make targets

Target Description

progtool Performs specified operations on the programmer/firmware-loader.

This target expects user-interaction on the shell while running it. When prompted, you must specify

the command(s) to run for the tool.

bsp Generates a TARGET_GEN board/kit from TARGET.

This target generates a new BSP with the name provided in TARGET_GEN based on the current

TARGET. The TARGET_GEN variable must be populated with the name of the new TARGET.

Optionally, you may define the target device (DEVICE_GEN) and additional devices

(ADDITIONAL_DEVICES_GEN) such as radios. For example:

make bsp TARGET_GEN=NewBoard DEVICE_GEN=CY8C624ABZI-S2D44

ADDITIONAL_DEVICES_GEN=CYW4343WKUBG

update_bsp Change the device in a custom BSP generated by the make bsp command.

This target changes the device set in a custom BSP generated by the make bsp command. The

TARGET_GEN variable will specify the BSP to modify. The DEVICE_GEN variable will specify the

new target device of the BSP. For example:

make update_bsp TARGET_GEN=NewBoard DEVICE_GEN=CY8C624ABZI-S2D44

lib2mtbx Convert .lib files to .mtbx files

This will recursively look for .lib files in CONVERSION_PATH and create equivalent .mtbx files

adjacent to them. The type of .mtbx file is determined by the CONVERSION_TYPE variable. This

can be either [local] or [shared]. The default is [local].

import_deps Import dependent .mtbx files of a given path into the application.

This will recursively look for .mtbx files in IMPORT_PATH, copy them to the application's deps

directory and rename them to .mtb files. This makes them direct dependencies of the application.

Note that the import process is not applicable for applications using .lib files. These libraries must

instead be situated in the application directory. This process does not automatically lock the

libraries to the latest version; use the Library Manager to lock versions.

get_app_info Prints the application info for the Eclipse IDE for ModusToolbox™.

The file types can be specified by setting the CY_CONFIG_FILE_EXT variable. For example:

make get_app_info CY_CONFIG_FILE_EXT="modus cybt cyusbdev"

get_env_info Prints the make, git, and, application repo info.

This allows a quick printout of the current application repo and the make and git tool locations and

versions.

printlibs Prints the status of the library repos.

This target parses through the library repos and prints the SHA1 commit. It also shows whether the

repo is clean (no changes) or dirty (modified or new files).

check Checks for the necessary tools.

Not all tools are necessary for every build recipe. This target allows you to get an idea of which

tools are missing if a build fails in an unexpected way.

User Guide 40 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

ModusToolbox™ build system

3.9 Available make variables

The following variables customize various make targets. They can be defined in the application Makefile or
passed through the make invocation. The following sections group the variables for how they can be used.

3.9.1 Basic configuration make variables

These variables define basic aspects of building an application. For example:

make build TOOLCHAIN=GCC_ARM CONFIG=CustomConfig -j8

Variable Description

TARGET Specifies the target board/kit (that is, BSP). For example, CY8CPROTO-062-4343W.

Example usage: make build TARGET=CY8CPROTO-062-4343W

APPNAME Specifies the name of the application. For example, "AppV1" > AppV1.elf.

Example usage: make build APPNAME="AppV1"

This variable is used to set the name of the application artifact (programmable image). It also signifies

that the application will build for a programmable image artifact that is intended for a target board. For

applications that need to build to an archive (library), use the LIBNAME variable.

Note: This variable may also be used when generating launch configs when invoking the eclipse

target.

LIBNAME Specifies the name of the library application. For example, "LibV1" > LibV1.a.

Example Usage: make build LIBNAME="LibV1"

This variable is used to set the name of the application artifact (prebuilt library). It also signifies that the

application will build an archive (library) that is intended to be linked to another application. These

library applications can be added as dependencies to an artifact producing application using the

DEPENDENT_LIB_PATHS variable.

TOOLCHAIN Specifies the toolchain used to build the application. For example, GCC_ARM.

Example Usage: make build TOOLCHAIN=IAR CY_COMPILER_PATH="<path>/IAR
Systems/Embedded Workbench 8.4/arm/bin"

Supported toolchains for this include GCC_ARM, IAR, and ARM.

CONFIG Specifies the configuration option for the build [Debug Release].

Example Usage: make build CONFIG=Release

The CONFIG variable is not limited to Debug/Release. It can be other values. However in those instances,

the build system will not configure the optimization flags. Debug=lowest optimization, Release=highest

optimization.

The optimization flags are toolchain specific. If you go with your custom config, then you can manually

set the optimization flag in the CFLAGS.

VERBOSE Specifies whether the build is silent [false] or verbose [true].

Example Usage: make build VERBOSE=true

Setting VERBOSE to true may help in debugging build errors/warnings. By default, it is set to false.

User Guide 41 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

ModusToolbox™ build system

3.9.2 Advanced configuration make variables

These variables define advanced aspects of building an application.

Variable Description

SOURCES Specifies C/C++ and assembly files outside of application directory.

Example Usage (within Makefile): SOURCES+=path/to/file/Source1.c

This can be used to include files external to the application directory. The path can be

both absolute or relative to the application directory.

INCLUDES Specifies include paths outside of the application directory.

Example Usage (within Makefile): INCLUDES+=path/to/headers

Note: These MUST NOT have -I prepended. The path can be either absolute or relative

to the application directory.

DEFINES Specifies additional defines passed to the compiler.

Example Usage (within Makefile): DEFINES+=EXAMPLE_DEFINE=0x01

Note: These MUST NOT have -D prepended.

VFP_SELECT Selects hard/soft ABI for floating-point operations [softfp hardfp]. If not defined, this

value defaults to softfp.

Example Usage (within Makefile): VFP_SELECT=hardfp

CFLAGS Prepends additional C compiler flags.

Example Usage (within Makefile): CFLAGS+= -Werror -Wall -O2

Note: If the entire C compiler flags list needs to be replaced, define the

CY_RECIPE_CFLAGS make variable with the desired C flags. The values

should be space separated.

CXXFLAGS Prepends additional C++ compiler flags.

Example Usage (within Makefile): CXXFLAGS+= -finline-functions

Note: If the entire C++ compiler flags list needs to be replaced, define the

CY_RECIPE_CXXFLAGS make variable with the desired C++ flags. Usage is

similar to CFLAGS.

ASFLAGS Prepends additional assembler flags.

Note: If the entire assembler flags list needs to be replaced, define the

CY_RECIPE_ASFLAGS make variable with the desired assembly flags. Usage

is similar to CFLAGS.

LDFLAGS Prepends additional linker flags.

Example Usage (within Makefile): LDFLAGS+= -nodefaultlibs

Note: If the entire linker flags list needs to be replaced, define the

CY_RECIPE_LDFLAGS make variable with the desired linker flags. Usage is

similar to CFLAGS.

LDLIBS Includes application-specific prebuilt libraries.

Example Usage (within Makefile): LDLIBS+=../MyBinaryFolder/binary.o

Note: If additional libraries need to be added using -l or -L, add to the

CY_RECIPE_EXTRA_LIBS make variable. Usage is similar to CFLAGS.

User Guide 42 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

ModusToolbox™ build system

Variable Description

LINKER_SCRIPT Specifies a custom linker script location.

Example Usage (within Makefile):
LINKER_SCRIPT=path/to/file/Custom_Linker1.ld

This linker script overrides the default.

Note: Additional linker scripts can be added for GCC via the LDFLAGS variable as a -L

option.

PREBUILD Specifies the location of a custom pre-build step and its arguments. This operation runs

before the build recipe's pre-build step.

Example Usage (within Makefile): PREBUILD=python example_script.py

Note: BSPs can also define a pre-build step. This runs before the application pre-build

step.

If the default pre-build step needs to be replaced, define the CY_RECIPE_PREBUILD

make variable with the desired pre-build step.

POSTBUILD Specifies the location of a custom post-build step and its arguments. This operation runs

after the build recipe's post-build step.

Example Usage (within Makefile): POSTBUILD=python example_script.py

Note: BSPs can also define a post-build step. This runs before the application post-

build step.

Note: If the default post-build step needs to be replaced, define the

CY_RECIPE_POSTBUILD make variable with the desired post-build step.

COMPONENTS Adds component-specific files to the build.

Example Usage (within Makefile): COMPONENTS+=CUSTOM_CONFIGURATION

Create a directory named COMPONENT_<VALUE> and place your files. Then provide

<VALUE> to this make variable to have that feature library be included in the build.

For example, create a directory named COMPONENT_ACCELEROMETER. Then include it in

the make variable: COMPONENT=ACCELEROMETER. If the make variable does not

include the <VALUE>, then that library will not be included in the build.

Note: If the default COMPONENT list must be overridden, define the

CY_COMPONENT_LIST make variable with the list of component values.

DISABLE_COMPONENTS Removes component-specific files from the build.

Example Usage (within Makefile): DISABLE_COMPONENTS=BSP_DESIGN_MODUS

Include a <VALUE> to this make variable to have that feature library be excluded in the

build. For example, to exclude the contents of the COMPONENT_BSP_DESIGN_MODUS

directory, set DISABLE_COMPONENTS=BSP_DESIGN_MODUS as shown.

DEPENDENT_LIB_PATHS List of dependent library application paths. For example, ../bspLib.

Note: This variable replaces the SEARCH_LIBS_AND_INCLUDES variable.

An artifact-producing application (defined by setting APPNAME) can have a dependency

on library applications (defined by setting LIBNAME). This variable defines those

dependencies for the artifact-producing application. The actual build invocation of

those libraries is handled at the application level by defining the shared_libs target.

For example:

shared_libs:

 make -C ../bspLib build -j

User Guide 43 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

ModusToolbox™ build system

Variable Description

DEPENDENT_APP_PATHS List of dependent application paths. For example, ../cy_m0p_image.

The main application can have a dependency on other artifact producing applications

(defined by setting APPNAME). This variable defines those dependencies for the main

application. The artifacts of these dependent applications are translated to c-arrays and

are brought into the main application as regular c-files and are compiled and linked. The

main application also generates a "standalone" variant of the main application that

does not include the dependent applications.

SEARCH List of paths to include in auto-discovery. For example, ../mtb_shared/lib1.

When getlibs is run for applications that use .mtb files, a file is generated in

./libs/mtb.mk. This file automatically populates the SEARCH variable with the locations

of the libraries in the shared repo location (set by the CY_GETLIBS_SEARCH_PATH

and CY_GETLIBS_SHARED_NAME variables). The SEARCH variable can also be used

by the application to include other directories to auto-discovery.

IMPORT_PATH Path to .mtbx dependency files to import into the application.

This variable must be defined when calling import_deps. Any .mtbx dependency file

found in this directory will be imported into the application and will become a direct

dependency.

Note: This is not applicable for applications using .lib files.

CONVERSION_PATH Path to the .lib files to convert to .mtbx files.

This variable must be defined when calling lib2mtbx. Any .lib file found in this

directory will be converted.

CONVERSION_TYPE (optional) Defines the type of .mtbx file to create.

This variable can be set to [local] or [shared]. The default type is [local]. If [local], the

library will be deposited in the application's CY_GETLIBS_PATH directory when

performing getlibs. If [shared], the library will be deposited (when running getlibs)

in the shared location as defined by CY_GETLIBS_SHARED_PATH and

CY_GETLIBS_SHARED_NAME.

FORCE Optional) Force overwrite existing files.

When this variable is set [true], lib2mtbx overwrites any existing .mtbx files.

3.9.3 BSP make variables

These variables are used with the make bsp target.

Variable Description

DEVICE Device ID for the primary MCU on the target board/kit (set by TARGET.mk).

The device identifier is mandatory for all board/kits.

TARGET_GEN Name of the new target board/kit.

Example Usage: make bsp TARGET_GEN=MyBSP

This is a mandatory variable when calling the bsp make target. It is used to name the board/kit files

and directory.

DEVICE_GEN (Optional) Device ID for the primary MCU on the new target board/kit.

Example Usage: make bsp TARGET_GEN=MyBSP DEVICE_GEN=CY8C624ABZI-S2D44

This is an optional variable when calling the bsp make target to replace the primary MCU on the board

(overwrites DEVICE).

If it is not defined, the new board/kit will use the existing DEVICE from the board/kit that it is copying

from.

User Guide 44 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

ModusToolbox™ build system

3.9.4 Getlibs make variables

These variables are used with the make getlibs target.

Variable Description

CY_GETLIBS_NO_CACHE Disables the cache when running getlibs.

Example Usage: make getlibs CY_GETLIBS_NO_CACHE=true

To improve the library creation time, the getlibs target uses a cache located in the

user's home directory ($HOME for macOS/Linux and $USERPROFILE for Windows).

Disabling the cache allows 3rd-party libraries to be brought in to the application

using .mtb files just like our libraries.

CY_GETLIBS_OFFLINE Use the offline location as the library source.

Example Usage: make getlibs CY_GETLIBS_OFFLINE=true

Setting this variable signals to the build system to use the offline location (Default:

<HOME>/.modustoolbox/offline) when running the getlibs target. The location of

the offline content can be changed by defining the CY_GETLIBS_OFFLINE_PATH

variable.

CY_GETLIBS_PATH Absolute path to the intended location of libs directory.

Example Usage: make getlibs
CY_GETLIBS_PATH="path/to/directory"

The library repos are cloned into a directory named, libs (default:

<CY_APP_PATH>/libs). Setting this variable allows specifying the location of the libs

directory to be elsewhere on disk.

CY_GETLIBS_DEPS_PATH Absolute path to where the library-manager stores .mtb and .lib files. Usage is similar

to CY_GETLIBS_PATH.

Setting this path allows relocating the directory that the library-manager uses to

store the .mtb / .lib files in your application. The default location is in a directory

named /deps (Default: <CY_APP_PATH>/deps).

Note: This variable requires ModusToolbox™ tools_2.1 or higher.

CY_GETLIBS_CACHE_PATH Absolute path to the cache directory. Usage is similar to CY_GETLIBS_PATH.

The build system caches all cloned repos in a directory named /cache (Default:

<HOME>/.modustoolbox/cache). Setting this variable allows the cache to be relocated

to elsewhere on disk. To disable the cache entirely, set the

CY_GETLIBS_NO_CACHE variable to [true].

Note: This variable requires ModusToolbox™ tools_2.1 or higher.

CY_GETLIBS_OFFLINE_PATH Absolute path to the offline content directory. Usage is similar to

CY_GETLIBS_PATH.

The offline content is used to create/update applications when not connected to the

internet (Default: <HOME>/.modustoolbox/offline). Setting this variable allows to

relocate the offline content to elsewhere on disk.

Note: This variable requires ModusToolbox™ tools_2.1 or higher.

CY_GETLIBS_SEARCH_PATH Relative path to the top directory for getlibs operation. Usage is similar to

CY_GETLIBS_PATH.

The getlibs operation by default executes at the location of the CY_APP_PATH.

This can be overridden by specifying this variable to point to a specific location.

User Guide 45 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

ModusToolbox™ build system

Variable Description

CY_GETLIBS_SHARED_PATH Relative path to the shared repo location.

All .mtb files have the format, <URI><COMMIT><LOCATION>. If the <LOCATION>

field begins with $$ASSET_REPO$$, then the repo is deposited in the path

specified by the CY_GETLIBS_SHARED_PATH variable. The default location is one

directory level above the current application directory (Default: ../). This is used with

CY_GETLIBS_SHARED_NAME variable, which specifies the directory name.

CY_GETLIBS_SHARED_NAME Directory name of the shared repo location.

All .mtb files have the format, <URI><COMMIT><LOCATION>. If the <LOCATION>

field begins with $$ASSET_REPO$$, then the repo is deposited in the directory

specified by the CY_GETLIBS_SHARED_NAME variable. The default directory name

is "mtb_shared". This is used with CY_GETLIBS_SHARED_PATH variable, which

specifies the directory path.

3.9.5 Path make variables

These variables are used to specify various paths.

Variable Description

CY_APP_PATH Relative path to the top-level of application. For example, ./

Settings this path to other than ./ allows the auto-discovery mechanism to search from

a root directory location that is higher than the application directory. For example,

CY_APP_PATH=../../ allows auto-discovery of files from a location that is two

directories above the location of ./Makefile.

CY_BASELIB_PATH Relative path to the base library. For example, ./libs/recipe-make-cat1a

This directory must be relative to CY_APP_PATH. It defines the location of the library

containing the recipe Makefiles, where the expected directory structure is

<CY_BASELIB_PATH>/make. All applications must set the location of the recipe base

library. For applications using .mtb files, the BSP's TARGET.mk file sets this variable and

therefore the application does not need to.

CY_BASELIB_CORE_PATH Relative path to the core base library. For example, ./libs/core-make

This directory must be relative to CY_APP_PATH. It defines the location of the library

containing the core make files, where the expected directory structure is

<CY_BASELIB_CORE_PATH>/make. All applications must set the location of the core base

library.

For applications using .mtb files, the BSP's TARGET.mk file sets this variable and

therefore the application does not need to. This variable is not applicable for

applications using the combined base library (such as recipe-make-cat1a).

CY_EXTAPP_PATH Relative path to an external application directory. For example, ../external

This directory must be relative to CY_APP_PATH. Setting this path allows

incorporating files external to CY_APP_PATH.

For example, CY_EXTAPP_PATH=../external lets auto-discovery pull in the

contents of ../external directory into the build.

Note: This variable is only supported in CLI. Use the shared_libs mechanism and

DEPENDENT_LIB_PATHS for tools and IDE support.

Note: The same functionality exists in the SEARCH variable. Using the SEARCH

variable is preferred over CY_EXTAPP_PATH.

User Guide 46 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

ModusToolbox™ build system

Variable Description

CY_COMPILER_PATH Absolute path to the compiler (default: GCC_ARM in CY_TOOLS_DIR).

Setting this path allows custom toolchains to be used instead of the defaults. This

should be the location of the /bin directory containing the compiler, assembler, and

linker. For example:

CY_COMPILER_PATH="C:/Program Files (x86)/IAR Systems/Embedded Workbench

8.4/arm/"

CY_TOOLS_DIR Absolute path to the tools root directory.

Example Usage: make build
CY_TOOLS_DIR="path/to/ModusToolbox/tools_x.y"

Applications must specify the tools_<version> directory location, which contains the

root Makefile and the necessary tools and scripts to build an application. Application

Makefiles are configured to automatically search in the standard locations for various

platforms. If the tools are not located in the standard location, you may explicitly set

this.

CY_BUILD_LOCATION Absolute path to the build output directory (default: pwd/build).

The build output directory is structured as /TARGET/CONFIG/. Setting this variable

allows the build artifacts to be located in the directory pointed to by this variable.

CY_PYTHON_PATH Specifies the path to a specific Python executable.

Example Usage:
CY_PYTHON_PATH="path/to/python/executable/python.exe"

For make targets that depend on Python, the build system looks for Python 3 in the

user's PATH and uses that to invoke python. If you have a version of Python installed in

a non-default location and do not have a path set for it, you can set CY_PYTHON_PATH

as a System Variable. In Windows, you must use forward slashes in the path to the

Python executable.

CY_DEVICESUPPORT_PATH Relative path to the devicesupport.xml file.

This path specifies the location of the devicesupport.xml file for the Device Configurator.

It is used when the configurator needs to be run in a multi-application scenario.

TOOLCHAIN_MK_PATH Specifies the location of a custom TOOLCHAIN.mk file.

Defining this path allows the build system to use a custom TOOLCHAIN.mk file pointed

to by this variable.

Note: The make variables in this file should match the variables used in existing

TOOLCHAIN.mk files.

3.9.6 Miscellaneous make variables

These are miscellaneous variables used for various make targets.

Variable Description

CY_IGNORE Adds to the directory and file ignore list. For example, ./file1.c ./inc1

Example Usage: make build CY_IGNORE="path/to/file/ignore_file"

Directories and files listed in this variable are ignored in auto-discovery. This

mechanism works in combination with any existing .cyignore files in the application.

CY_SKIP_RECIPE Skip including the recipe Makefiles.

Setting this to [true/1] allows the application to not include any recipe Makefiles and

only include the start.mk file from the tools install.

CY_SKIP_CDB Skip creating .cdb files.

Constant Database (CDB) files are generated during the build process. Setting this to

[true] allows the build process to skip the .cdb files creation.

User Guide 47 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

ModusToolbox™ build system

Variable Description

CY_EXTRA_INCLUDES Specifies additional Makefiles to add to the build.

Example Usage: make build CY_EXTRA_INCLUDES="./custom1.mk"

This variable provides a way of injecting additional make files into the core make

files. It can be used when including the make file before or after start.mk in the

application Makefile is not possible.

CY_LIBS_SEARCH_DEPTH Directory search depth for .mtb files (default: 5).

Example Usage: make getlibs CY_LIBS_SEARCH_DEPTH=7

This variable controls how deep the search mechanism in getlibs looks for .mtb

files.

Note: Deeper searches take longer to process.

CY_UTILS_SEARCH_DEPTH Directory search depth for .cyignore and TARGET.mk files (default: 5).

Example Usage: make getlibs CY_UTILS_SEARCH_DEPTH=7

This variable controls how deep the search mechanism looks for .cyignore and

TARGET.mk files. Min=1, Max=9.

Note: Deeper searches take longer to process.

CY_IDE_PRJNAME Name of the Eclipse IDE application.

Example Usage: make eclipse CY_IDE_PRJNAME="AppV1"

This variable can be used to define the file and target application name when

generating Eclipse launch configurations in the eclipse target.

CY_CONFIG_FILE_EXT Specifies the configurator file extension. For example, *.modus.

Example Usage: make get_app_info CY_CONFIG_FILE_EXT="modus
cybt cyusbdev"

This variable accepts a space-separated list of configurator file extensions to search

when running the get_app_info target.

CY_SUPPORTED_TOOL_TYPES Defines the supported tools for a BSP.

Example Usage (bsp.mk): CY_SUPPORTED_TOOL_TYPES+=seglcd-
configurator

BSPs can define the supported tools that can be launched using the open target. The

supported tool types are bt-configurator, capsense-configurator,
capsense-tuner, device-configurator, dfuh-tool, library-

manager, project-creator, qspi-configurator, seglcd-

configurator, smartio-configurator, and usbdev-configurator.

The BSP can make adjustments to the default recipe if needed.

User Guide 48 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Board support packages

4 Board support packages

4.1 Overview

A BSP provides a standard interface to a board's features and capabilities. The API is consistent across our kits.
Other software (such as middleware or an application) can use the BSP to configure and control the hardware.
BSPs do the following:

• initialize device resources, such as clocks and power supplies to set up the device to run firmware.

• contain default linker scripts and startup code that you can customize for your board.

• contain the hardware configuration (structures and macros) for both device peripherals and board

peripherals.

• provide abstraction to the board by providing common aliases or names to refer to the board peripherals,

such as buttons and LEDs.

• include the libraries for the default capabilities on the board. For example, the BSP for a kit with

CAPSENSE™ capabilities includes the CAPSENSE™ library.

4.2 What’s in a BSP

This section presents an overview of the key resources that are part of a BSP. Using the MTB flow, applications
can share BSPs and libraries. BSPs that are local to the application are located in the libs subdirectory, while

shared BSPs are located in the mtb_shared directory adjacent to the application directory. For more details
about library management, refer to the Library Manager user guide.

The following shows a typical PSoC™ 6 BSP located in the application's libs subdirectory on the left. It also

shows a shared BSP located in the mtb_shared directory on the right.

Note: For BTSDK v2.8 and later, shared BSPs and some shared libraries are located in subdirectories in
the mtb_shared directory. For example:

https://www.infineon.com/ModusToolboxLibraryManager

User Guide 49 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Board support packages

For BTSDK v2.7 and earlier, shared BSPs and libraries can be found in the same structure, but without the
leading mtb_shared directory as shown in the previous image.

The following sections describe the various files and directories in a typical BSP:

4.2.1 COMPONENT_BSP_DESIGN_MODUS

This directory contains the configuration files (such as design.modus) for use with various BSP configurator

tools, including Device Configurator, QSPI Configurator, and CAPSENSE™ Configurator. At the start of a build,
the build system invokes these tools to generate the source files in the GeneratedSource directory. See
Modifying the BSP configuration for a single application to learn how the application can override this

component.

4.2.2 COMPONENT

Some applications may have additional "COMPONENT" subdirectories. These directories are conditional,
based on what the BSP is being built for. For example, the PSoC™ 6 BSPs include COMPONENT directories to

restrict which files are used when building for the Arm Cortex M4 or M0+ core.

4.2.3 deps subdirectory

The deps subdirectory inside the BSP contains .lib files from earlier versions of ModusToolbox™. This is not the

same as the deps subdirectory inside the application that contains the .mtb files. See Typical application

contents for more details.

4.2.4 docs subdirectory

The docs subdirectory contains the documentation in HTML format for the selected BSP.

4.2.5 Support files

Different BSPs will contain various files, such as the API interface to the board's resources. For example, a
typical PSoC™ 6 BSP contains the following:

• cybsp.c /.h – You need to include only cybsp.h in your application to use all the features of a BSP.

Call cybsp_init () from cybsp.c to initialize the board.

• cybsp_types.h – This currently contains Doxygen comments. It is intended to contain the aliases (macro

definitions) for all the board resources, as needed.

• system_psoc6.h – This file provides information about the chip initialization that is done pre- main().

User Guide 50 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Board support packages

4.2.6 <BSP_NAME>.mk

This file defines the DEVICE and other BSP-specific make variables such as COMPONENTS. These are described
in the ModusToolbox™ build system chapter. It also defines board-specific information such as the device ID,

compiler and linker flags, pre-builds/post-builds, and components used with this board implementation.

4.2.7 locate_recipe.mk

This is a helper file for the BSP to specify the path to the core and recipe Makefiles that are included as
dependent libraries.

4.2.8 README/RELEASE.md

These are documentation files. The README.md file describes the BSP overall, while the RELEASE.md file covers
changes made to version of the BSP.

4.2.9 BTSDK-specific BSP files

BTSDK BSPs may optionally provide the following types of files:

• wiced_platform.h – Platform specific structures to define hardware information such as max number of

GPIOs, LEDs or.user buttons available

• Makefile – Provided to support LIB flow applications (BTSDK 2.7 and earlier). Not used in MTB flow BTSDK

2.8 or later applications.

• *.hex – binary application image files that are used as part of the embedded application creation, program,

and/or OTA (Over-The-Air) upgrade processes.

• platform*.c/h – Platform specific source and header files used by platform and application initialization

functions.

• <BSP_NAME>*.cgs – Patch configuration records in text format, can be multiple copies supporting various

board configurations.

• <BSP_NAME>*.btp – Configuration options related to building and programming the application image, can

be multiple copies supporting various board configurations.

4.3 Creating your own BSP

This section contains a condensed version of these instructions. For a better understanding of the contents and
structure of a BSP and more detailed information about how to update the Wi-Fi and Bluetooth® connectivity

device and firmware in a BSP, refer to https://www.cypress.com/ModusToolboxCreateCustomBSP.

In most cases before you do any real design work on your application, you should create a BSP for your device

and/or board. This allows you to configure the settings for your own custom hardware or for different linker
options. Plus, you can save the BSP for use in future applications.

There are two basic methods to create a BSP; each involves creating an application. Using the first method,
specify the closest-matching BSP to your intended BSP. In this case, you usually have to remove various

settings and options that you don't need. For the second method, specify a "generic" BSP template when
creating your application. In this case, your BSP is essentially built from scratch, and you need to add and

configure settings and options for your needs.

Regardless of the method you choose, the basic process is the same for both:

1. Create a simple example application. Use a BSP that is close to your goal or select a "generic" BSP.

https://www.infineon.com/ModusToolboxCreateCustomBSP

User Guide 51 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Board support packages

2. Navigate to the application directory, and run the make bsp target. Specify the new board name by
passing the value to the TARGET_GEN variable. This this is the minimum required. For example, to create a

BSP called MyBSP:

make bsp TARGET_GEN=MyBSP

Optionally, you may use DEVICE_GEN specify a new device if it is different than the one included with the

original BSP. For example:

make bsp TARGET_GEN=MyBSP DEVICE_GEN=CY8C624ABZI-S2D44

The make bsp command creates a new BSP with the provided name at the top of the application project. It
automatically copies the relevant startup and linker scripts into the newly created BSP, based on the device

specified by the DEVICE_GEN option.

It also creates .mtbx files for all the BSP's dependences. The make getlib process automnatically creates

indirect dependencies for .mtbx files in custom BSPs.

Note: The BSP used as your starting point may have library references (for example, capsense.lib or udb-
sdio-whd.lib) that are not needed by your custom BSP. You can delete these from the BSP's deps
subdirectory. Be sure to remove the corresponding .mtbx files as well.

3. Update the application's Makefile TARGET variable to point to your new BSP. For example:

TARGET=MyBSP

4. Open the Device Configurator to customize settings in the new BSP's design.modus file for pin names,

clocks, power supplies, and peripherals as required. Also, address any issues that arise.

5. Start writing code for your application.

If using an IDE, you need to generate/regenerate the configuration settings to reflect the new BSP. Use the

appropriate command(s) for the IDE(s) that are being used. For example:

make vscode

Note: Use make help to see all supported IDE make targets. See also the Exporting to supported IDEs

chapter in this document.

If you want to re-use a custom BSP on multiple applications, you can copy it into each application or you can
put it into a version control system such as Git. See the Manifest files chapter for information on how to create a
manifest to include your custom BSPs and their dependencies if you want them to show up as standard BSPs in
the Project Creator and Library Manager.

4.4 Modifying the BSP configuration for a single application

In cases where you don't want to create a BSP, you can modify the BSP configuration for a single application
(such as different pin or peripheral settings). However, you should not typically modify the BSP directly since
that results in changes to the BSP library. This would prevent you from updating the repository in the future,
and it may affect other applications in the same workspace. Instead, use the following process to create a

custom set of configuration files for a specific application:

1. Create a directory at the root of the application to hold any custom BSP configuration files. For example:

Hello_World/COMPONENT_CUSTOM_DESIGN_MODUS

User Guide 52 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Board support packages

This is a recommended best practice. In an upcoming step, you will modify the Makefile to include files from

that directory instead of the directory containing the default configuration files in the BSP.

2. Create a subdirectory for each target that you want to support in your application. For example:

Hello_World/COMPONENT_CUSTOM_DESIGN_MODUS/TARGET_CY8CKIT-062S2-43012

The subdirectory name must be TARGET_<board name>. Again, this is a recommended best practice. If you

only ever build with one BSP, this directory is not required, but it is safer to include it.

The build system automatically includes all source files inside a directory that begins with TARGET_,

followed by the target name for compilation, when that target is specified in the application's Makefile. The

file structure appears as follows. In this example, the COMPONENT_BSP_DESIGN_MODUS directory for this

application is overridden for just one target: CY8CKIT-062S2-43012.

3. Copy the design.modus file and other configuration files (that is, everything from inside the original BSP's
COMPONENT_BSP_DESIGN_MODUS directory), and paste them into the new directory for the target.

4. In the application's Makefile, add the following lines. For example:

DISABLE_COMPONENTS += BSP_DESIGN_MODUS

COMPONENTS += CUSTOM_DESIGN_MODUS

Note: The Makefile already contains blank DISABLE_COMPONENTS and COMPONENTS lines where you
can add the appropriate names.

The first line disables the configuration files from the original BSP since they are now in different directory.

The second line is required to specify the new directory to include your custom configuration files, and to

ensure that the init_cycfg_all function is still called from the cybsp_init function. The

init_cycfg_all function is used to initialize the hardware that was set up in the configuration files.

5. Customize the configuration files as required, such as using the Device Configurator to open the
design.modus file and modify appropriate settings.

Note: When you first create a custom configuration for an application, the Eclipse IDE Quick Panel entry
to launch the Device Configurator may still open the design.modus file from the original BSP

instead of the custom file. To fix this, click the Refresh Quick Panel link.

When you save the changes in the design.modus file, the source files are generated and placed under the

GeneratedSource directory. The file structure appears as follows:

User Guide 53 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Board support packages

6. When finished customizing the configuration settings, you can build the application and program the
device as usual.

User Guide 54 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Manifest files

5 Manifest files

5.1 Overview

Manifests are XML files that tell the Project Creator and Library Manager how to discover the list of available
boards, example projects, libraries and library dependencies. There are several manifest files.

• The "super-manifest" file contains a list of URLs that software uses to find the board, code example, and

middleware manifest files.

• The "app-manifest" file contains a list of all code examples that should be made available to the user.

• The "board-manifest" file contains a list of the boards that should be presented to the user in the new
project creation tool as well as the list of BSP packages that are presented in the Library Manager tool.

There is also a separate BSP dependencies manifest that lists the dependent libraries associated with each

BSP.

• The "middleware-manifest" file contains a list of the available middleware (libraries). Each middleware

item can have one or more versions of that middleware available. There is also a separate middleware

dependencies manifest that lists the dependent libraries associated with each middleware library.

Beginning with the ModusToolbox™ 2.2 release, there are two versions of manifest files: the existing ones for

the LIB flow and earlier versions of ModusToolbox™ software, and new ones for the MTB flow (aka "fv2"). The
existing super-manifest file for use with the ModusToolbox™ 2.1 release and earlier contains only references to
manifests that contain items that support the LIB flow. The new super-manifest file for use with the

ModusToolbox™ 2.2 release and later contains references to all the manifest files.

5.2 Create your own manifest

By default, the ModusToolbox™ tools look for our manifest files maintained on our server. So, the initial lists of

BSPs, code examples, and middleware available to use are limited to our manifest files. You can create your
own manifest files on your servers or locally on your machine, and you can override where ModusToolbox™
tools look for manifest files.

User Guide 55 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Manifest files

To use your own examples, BSPs, and middleware, you need to create manifest files for your content and a
super-manifest that points to your manifest files. To see examples of the syntax of super-manifest and manifest

files, you can look at files provided on GitHub:

• Super-manifest: https://github.com/Infineon/mtb-super-manifest

• Code example manifest: https://github.com/Infineon/mtb-ce-manifest

• BSP manifest (including dependencies): https://github.com/Infineon/mtb-bsp-manifest

• Middleware manifest (including dependencies): https://github.com/Infineon/mtb-mw-manifest

Make sure you look at the "fv2" manifest files if you are using the MTB flow.

The manifest system is flexible, and there are multiple paths you can follow to customize the manifests.

• You can customize a super-manifest file and override the default file used by the tools.

• You can create secondary super-manifest files that identify additional content. The tools will merge your

additional content with the default super-manifest.

• You can modify or replace any of the default manifest files (code example, BSP, etc.) with custom files, so

long as your custom super-manifest file points to those rather than the default files.

5.2.1 Overriding the standard super-manifest

The location of the standard super-manifest file is hard coded into all of the tools. However, you may override

this location by setting the CyRemoteManifestOverride environment variable. When this variable is set, the
tools use the value of this variable as the location of the super-manifest file and the hard-coded location is
ignored. For example:

CyRemoteManifestOverride=https://myURL.com/mylocation/super-manifest.xml

5.2.2 Secondary super-manifest

In addition to the standard super-manifest file, you can specify additional super-manifest files. This allows you

to add additional items (BSPs, code examples, libraries) along with the standard items. Do this by creating a file

called manifest.loc in a hidden directory in your home directory named ".modustoolbox."

<user_home>/.modusToolbox/manifest.loc

For example, a manifest.loc file may have:

This points to the IOT Expert template set

https://github.com/iotexpert/mtb2-iotexpert-manifests/raw/master/iotexpert-super-

manifest.xml

Note: You can point to local super-manifest and manifest files by using file:/// with the path instead of
https://. For example:

file:///C:/MyManifests/my-super-manifest.xml

If the manifest.loc file exists, then each line in this file is treated as the URL to a super-manifest file. These are
called the secondary or custom super-manifest files. The format of these files is exactly like the standard super-

manifest file. Each of the custom super-manifest files are treated as separate super-manifest files. See the

Conflicting data section for dealing with conflicts.

https://github.com/Infineon/mtb-super-manifest
https://github.com/Infineon/mtb-ce-manifest
https://github.com/Infineon/mtb-bsp-manifest
https://github.com/Infineon/mtb-mw-manifest

User Guide 56 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Manifest files

5.2.3 Processing

The process for using the manifest files is the same for all tools that use the data. The first step is to access the
super-manifest file(s) to obtain a list of manifest files for each of the categories that the tool cares about. For

example, the Library Manager tool cares about the board and middleware manifests.

The second step is to retrieve the manifest data from each manifest file and merge the data into a single global
data model in the tool. See the Conflicting data section for dealing with conflicts.

There is no per-file scoping. All data is merged before it is presented. The combination of a super manifest file
and the merging of all of the data allows various contributors, including third party contributors, to make new
data available without requiring coordinated releases between the various contributors.

The following table shows how manifests are processed:

Source Syntax Effect

CyRemoteManifestOverride valid URL (e.g., file:/// ... or http:// ...) Use that URL to fetch the super-manifest.

Fragment (e.g., my/manifests/super-

manifest.xml

Append the home directory to the front (e.g.,

file:///c:/Users/benh/my/manifests/super-

manifest.xml)

manifest.loc valid URL (e.g., file:/// ... or http:// ...) Use that URL to fetch the super-manifest.

Fragment (e.g., my/manifests/super-

manifest.xml

Append the directory in which manifest.loc

resides (e.g.,

file:///c:/Users/benh/.modustoolbox/my/manifes

ts/super-manifest.xml)

Manifest URIs valid URI (e.g., file:/// ... or http:// ...) Use that URI to fetch the manifest.

Manifest URIs from a local

super-manifest file

fragment (e.g.,

my/manifests/manifest.xml)

Append the directory in which source super-

manifest resides (e.g.,

file:///c:/Users/benh/.modustoolbox/my/manifes

ts/manifest.xml

Manifest URIs from a remote

super-manifest file

fragment (e.g.,

my/manifests/manifest.xml)

Append the home directory to the front (e.g.,

file:///c:/Users/benh/my/manifests/manifest.xml)

5.2.4 Conflicting data

Ultimately, data from all of the super-manifest and manifest files are combined into a single data collection of

BSPs, code examples, and middleware. During the collation of this data, there may be conflicting data entries.
There are two types of conflicts.

The first kind is a conflict between data that comes from the primary super-manifest (and linked manifests) and

data that comes from the custom super-manifest (and linked manifests). In this case, the data in the custom
location overwrites the data from the standard location. This mechanism allows you to intentionally override

data that is in the standard location. In this case, no error or warning is issued. It is a valid use case.

The second kind of conflict is between data coming from the same source (that is, both from primary or both

from secondary). In this case, an error message is printed and all pieces of conflicting data are removed from

the data model. This is done because in this case, it is not clear which data item is the correct one.

User Guide 57 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Manifest files

5.3 Using offline content

In normal mode, ModusToolbox™ tools look for manifest files maintained on GitHub and downloads the
firmware libraries from git repositories referenced by the manifests. If a network connection to online resources

is not available, you can download a copy of all manifests and content, and then point the tools to use this copy
in offline mode. This section describes how to download, install, and use the offline content.

Note: ModusToolbox™ libraries are updated frequently, and the offline content does not always have the
latest versions available. We strongly recommend using the online content whenever possible. See

https://community.cypress.com/docs/DOC-19903 for more details.

1. Download the modustoolbox-offline-content.zip file from our website:

https://softwaretools.infineon.com/tools/com.ifx.tb.tool.modustoolboxofflinecontentpackage

2. If you do not already have a hidden directory named .modustoolbox in your home directory, create one.

Using Cygwin on Windows for example:

mkdir -p "$USERPROFILE/.modustoolbox"

3. Extract the ZIP archive to the /.modustoolbox sub-directory in your home directory. The resulting path
should be:

~/.modustoolbox/offline

The following is a Cygwin on Windows command-line example to use for extracting the content:

unzip -qbod "$USERPROFILE/.modustoolbox" modustoolbox-offline-content.zip

Note: If you previously installed a copy of the offline content, you should delete the existing
~/.modustoolbox/offline directory before extracting the archive. Using Cygwin on Windows for

example:

rm -rf "$USERPROFILE/.modustoolbox/offline"

4. To use the Project Creator GUI or Library Manager GUI in offline mode, select Offline from the Settings
menu (refer to the appropriate user guide for details).

Note: Make sure CyRemoteManifestOverride variable is not set when you use offline mode.

5. To use the Project Creator CLI in offline mode, execute the tool with the --offline argument. For
example:

project-creator-cli --board-id CY8CPROTO-062-4343W --app-id mtb-example-psoc6-

hello-world --offline

6. The Project Creator and Library Manager tools execute the make getlibs command under the hood to
download/update the firmware libraries. To execute the make getlibs target in offline mode, pass the

CY_GETLIBS_OFFLINE=true argument:

make getlibs CY_GETLIBS_OFFLINE=true

To override the location of the offline content, set the CY_GETLIBS_OFFLINE_PATH variable:

make getlibs CY_GETLIBS_OFFLINE=true

CY_GETLIBS_OFFLINE_PATH="~/custom/offline/content"

Refer to the ModusToolbox™ build system chapter for more details about make targets and variables.

https://community.cypress.com/docs/DOC-19903
https://softwaretools.infineon.com/tools/com.ifx.tb.tool.modustoolboxofflinecontentpackage

User Guide 58 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Manifest files

7. Once network connectivity is available, you can use the Library Manager tool to update the ModusToolbox™
project previously created offline to use the latest available content. Or you can execute the make

getlibs command without the CY_GETLIBS_OFFLINE argument.

5.4 Access private repositories

You can extend the custom manifest with additional content from git repositories (repos) hosted on GitHub or
any other online git server. To access private git repos, you must configure the git client so that the Project
Creator and Library Manager tools can authenticate over HTTP/HTTPS protocols without an interactive

password prompt.

Note: While you can host libraries on private repos, the custom content manifest must be accessible
without authentication (that is, it cannot be hosted on a private git repo).

To configure git credentials for non-interactive remote operations over HTTP protocols, refer to the git
documentation:

• https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage

• https://git-scm.com/docs/git-credential-store

The simplest way is to configure a git-credential-store and save the HTTP credentials is in a plain text file. Note

that this option is less secure than other git credential helpers that use OS credentials storage.

The following steps show how to configure a git client to access GitHub private repositories without a password
prompt:

1. Login to GitHub and go to Personal access tokens: https://github.com/settings/tokens

2. Click Generate new token to open the New personal access token screen.

3. On that screen:

a. Type some text in the Note field.

b. Under Select scopes, click on repo.

c. Click Generate token (scroll down to see the button).

d. Copy the generated token.

4. Open an interactive shell (for example, modus-shell\Cygwin.bat on Windows), and type the following

commands (replace the user name and token with your information):

git config --global credential."https://github.com".helper store

GITHUB_USER=<your-github-username>

GITHUB_TOKEN=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # generated at

https://github.com/settings/tokens

echo "https://$GITHUB_USER:$GITHUB_TOKEN@github.com" >> ~/.git-credentials

After entering the commands, you can clone private GitHub repositories without an interactive user/password
prompt.

Note: A GitHub account password can be used instead of GITHUB_TOKEN, in case the 2FA (two-factor
authentication) is not enabled for the GitHub account. However, this option is not recommended.

https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage
https://git-scm.com/docs/git-credential-store
https://github.com/settings/tokens

User Guide 59 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

6 Using applications with third-party tools

ModusToolbox™ software includes a variety of ways to use applications with third-party tools. This chapter
covers the following:

• Import to Eclipse

• Exporting to supported IDEs

• Generating files for XMC™ Simulator tool

6.1 Import to Eclipse

The easiest way to create a ModusToolbox™ application for Eclipse is to use the Eclipse IDE included with the
ModusToolbox™ software. ModusToolbox™ includes an Eclipse plugin that provides links to launch the Project

Creator tool and then import the application into Eclipse. For details, refer to the Eclipse IDE for
ModusToolbox™ quick start guide or user guide.

If you already have a ModusToolbox™ application created some other way than through the included Eclipse

IDE, you can import that application for use in Eclipse as follows:

1. Open the Eclipse IDE included with ModusToolbox™, and select Import Application on the Quick Panel

2. In the Project Location field, click the Browse… button; navigate to and select the application’s directory.

3. Click Finish.

The application displays in the Eclipse IDE Project Explorer.

http://www.infineon.com/ModusToolboxQSG
https://www.infineon.com/MTBEclipseIDEUserGuide

User Guide 60 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

6.2 Exporting to supported IDEs

6.2.1 Overview

This chapter describes how to export a ModusToolbox™ application to various supported IDEs in addition to the
provided Eclipse IDE. As described Getting started chapter, the Project Creator tool includes a Target IDE
option that generates files for the selected IDE. Also, as noted in the ModusToolbox™ build system chapter, the

make command includes various targets for the following IDEs:

• Visual Studio (VS) Code: make vscode

• IAR Embedded Workbench: make ewarm8 TOOLCHAIN=IAR

• Keil µVision: make uvision5 TOOLCHAIN=ARM

6.2.2 Export to VS Code

This section describes how to export a ModusToolbox™ application to VS Code.

6.2.2.1 Prerequisites

• ModusToolbox™ 2.4 software and application

• VS Code version 1.42.x or later

• VS Code extensions. Install the following.

Note: These versions change often; use the most current.

• C/C++ tools

• Cortex-Debug

• For J-Link debugging, download and install J-Link software:

https://www.segger.com/downloads/jlink

6.2.2.2 Process example

1. Create a ModusToolbox™ application.

a. If you use the Project Creator tool, choose "VS Code" from the Target IDE pull down menu.

b. If you use the command line, open an appropriate shell program (see CLI set-up instructions), and
navigate to the application directory, and run the following command:

make vscode

Either process generates json files for debug/program launches, IntelliSense, and custom tasks.

Note: Any time you update/patch the tools for your application(s), that path information might change.
So, you will need to regenerate the needed support files by running the make vscode command

or update them manually.

https://www.segger.com/downloads/jlink

User Guide 61 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

2. Open the VS Code tool.

a. To open the application and the mtb_shared directory in the same workspace, select File > Open
Workspace…

Navigate to the application directory and select the <application_name>.code-workspace file.

If you have several applications in the workspace, you can add them using Add workspace folder…

b. To open just the application and select File > Open Folder…

Note: On macOS, this command is File > Open…

Navigate to and select the application directory, and then click Select Directory.

3. When your application opens in the VS Code IDE, select Terminal > Run Build Task…

4. Then, select Build: Build [Debug]. After building, the VS Code terminal should display messages similar to

the following:

User Guide 62 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

6.2.2.3 To debug using KitProg3/MiniProg4

Click the Run and Debug icon on the left and then click the Play button.

The VS Code tool runs in debug mode.

6.2.2.4 To debug using J-Link

You can use a J-Link debugger probe to debug the application.

1. Navigate to and open the global settings.json file. If there is no such file, then create one. The file is located
here by default:

• Windows: %APPDATA%/Code/User/settings.json

• macOS: $HOME/Library/Application Support/Code/User/settings.json

• Linux: $HOME/.config/Code/User/settings.json

User Guide 63 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

2. Add the path to the J-Link GDB server. For example:

{"cortex-debug.JLinkGDBServerPath": "C:/Program Files

(x86)/SEGGER/JLink/JLinkGDBServerCL"}

• Windows: "cortex-debug.JLinkGDBServerPath": "<JLinkInstallDir>/JLinkGDBServerCL"

• macOS/Linux: "cortex-debug.JLinkGDBServerPath":
"<JLinkInstallDir>/JLinkGDBServer"

Note: The J-Link path can be configured in the local application's settings, if needed.

3. Click the Run and Debug icon, select Launch PSOC6 CM4 (JLink) config, and click the Play button.

User Guide 64 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

6.2.3 Export IAR EWARM (Windows only)

This section describes how to export a ModusToolbox™ application to IAR Embedded Workbench and debug it
with CMSIS-DAP or J-Link.

6.2.3.1 Prerequisites

• ModusToolbox™ 2.4 software and application

• Python 3.7 is installed in the tools_2.4 directory, and the make build system has been configured to use it.

You don't need to do anything if you use the modus-shell/Cygwin.bat file to run command line tools.

However, if you plan to use your own version of Cygwin or some other type of bash, you will need to ensure

your system is configured correctly to use Python 3.7. Use the CY_PYTHON_PATH as appropriate.

• IAR Embedded Workbench version 8.42.2 or later

• PSoC™ 6 Kit (for example, CY8CPROTO-062-4343W) with KitProg3 FW

• For J-Link debugging, download and install J-Link software:

https://www.segger.com/downloads/jlink/JLink_Windows.exe

6.2.3.2 Process example

1. Create a ModusToolbox™ application.

a. If you use the Project Creator tool, choose "IAR" from the Target IDE pull down menu.

b. If you use the command line, open an appropriate shell program (see CLI Set-up Instructions), navigate
to the application directory, and run the following command:

make ewarm8 TOOLCHAIN=IAR

Note: This sets the TOOLCHAIN to IAR in the Embedded Workbench configuration files but not in the
ModusToolbox™ application’s Makefile. Therefore, builds inside IAR Embedded Workbench will use
the IAR toolchain while builds from the ModusToolbox™ environment will continue to use the
toolchain that was previously specified in the Makefile. You can edit the Makefile’s TOOLCHAIN

variable if you also want ModusToolbox™ builds to use the IAR toolchain.

Note: Check the output log for instructions and information about various flags.

An IAR connection file appears in the application directory. For example:

mtb-example-psoc6-capsense-buttons-slider-freertos.ipcf

2. Start IAR Embedded Workbench.

3. On the main menu, select Project > Create New Project > Empty project and click OK.

https://www.segger.com/downloads/jlink/JLink_Windows.exe

User Guide 65 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

4. Browse to the ModusToolbox™ application directory, enter a desired application name, and click Save.

5. After the application is created, select File > Save Workspace. Then, enter a desired workspace name.

6. Select Project > Add Project Connection and click OK.

7. On the Select IAR Project Connection File dialog, select the .ipcf file and click Open:

8. On the main menu, Select Project > Make.

Note: If you don't care about staying connected to the ModusToolbox™ tools that generate the project

files, you can delete the .ipcf file from the workspace and restart IAR. The official IAR site discusses
this option: https://github.com/IARSystems/project-migration-tools

 If you don't remove the .ipcf file, you need to make all file/group additions at the workspace level.

9. Connect the PSoC™ 6 kit to the host PC.

https://github.com/IARSystems/project-migration-tools

User Guide 66 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

6.2.3.3 To use KitProg3/MiniProg4

1. As needed, run the fw-loader tool to make sure the board firmware is upgraded to KitProg3. See the

KitProg3 User Guide for details. The tool is in the following directory by default:

<user_home>/ModusToolbox/tools_2.4/fw-loader/bin/

2. Select Project > Options > Debugger and select CMSIS-DAP in the Driver list:

3. Select the CMSIS-DAP node, switch the interface from JTAG to SWD, and set the Interface speed to 2MHZ.

4. Click OK.

https://www.infineon.com/documentation/development-kitsboards/kitprog-user-guide

User Guide 67 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

5. Select Project > Download and Debug.

The IAR Embededed Workbench starts a debugging session and jumps to the main function.

6.2.3.4 To use MiniProg4 with PSoC™ 6 single core and PSoC™ 6 256K

For a single-core PSoC™ 6 MCU, you must specify a special type of reset, as follows:

User Guide 68 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

6.2.3.5 To use J-Link

You can use a J-Link debugger probe to debug the application.

1. Open the Options dialog and select the Debugger item under Category.

2. Then select J-Link/J-Trace as the active driver:

3. Select the J-Link/J-Trace item under Category, and under the Connection tab, switch the interface to

SWD:

Note: For PSoC™ 64 "Secure Boot" MCU, you must specify a special type of reset, as follows:

4. Connect a J-Link debug probe to the 10-pin adapter (needs to be soldered on the prototyping kits), and
start debugging.

User Guide 69 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

User Guide 70 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

6.2.4 Export to Keil µVision 5 (Windows only)

This section describes how to export ModusToolbox™ application to Keil µVision and debug it with CMSIS-DAP
or J-Link.

6.2.4.1 Prerequisites

• ModusToolbox™ 2.4 software and application

• Python 3.7 is installed in the tools_2.4 directory, and the make build system has been configured to use it.

You don't need to do anything if you use the modus-shell/Cygwin.bat file to run command line tools.

However, if you plan to use your own version of Cygwin or some other type of bash, you will need to ensure

your system is configured correctly to use Python 3.7. Use the CY_PYTHON_PATH as appropriate.

• Keil µVision version 5.28 or later

• PSoC™ 6 Kit (for example, CY8CPROTO-062-4343W) with KitProg3 Firmware

• For J-Link debugging, download and install J-Link software:

https://www.segger.com/downloads/jlink/JLink_Windows.exe

6.2.4.2 Process example

1. Create a ModusToolbox™ application.

a. If you use the Project Creator tool, choose "ARM MDK" from the Target IDE pull down menu.

b. If you use the command line, open an appropriate shell program (see CLI Set-up Instructions), navigate
to the application directory, and Run the following command:

make uvision5 TOOLCHAIN=ARM

Note: This sets the TOOLCHAIN to ARM in the Keil µVision configuration files but not in the
ModusToolbox™ application’s Makefile. Therefore, builds inside Keil µVision will use the ARM
toolchain while builds from the ModusToolbox™ environment will continue to use the toolchain
that was previously specified in the Makefile. You can edit the Makefile’s TOOLCHAIN variable if

you also want ModusToolbox™ builds to use the ARM toolchain.

Note: Check the output log for instructions and information about various flags.

This generates the following files in the application directory:

• mtb-example-psoc6-hello-world.cpdsc

• mtb-example-psoc6-hello-world.cprj

• mtb-example-psoc6-hello-world.gpdsc

The cpdsc file extension should have the association enabled to open it in Keil µVision.

https://www.segger.com/downloads/jlink/JLink_Windows.exe

User Guide 71 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

2. Double-click the mtb-example-psoc6-hello-world file (either *.cpdsc or *.cprj, depending on version). This
launches the Keil µVision IDE. The first time you do this, the following dialog displays:

3. Click Yes to install the device pack. You only need to do this once.

4. Follow the steps in the Pack Installer to properly install the device pack.

Note: In some cases, you may see the following error message:

SSL caching disabled in Windows Internet settings. Switched to offline mode.

See this link for how to solve this problem:
https://developer.arm.com/documentation/ka002253/latest

When complete, close the Pack Installer and close the Keil µVision IDE. Then double-click the .cpdsc/.cprj file

again and the application will be created for you in the IDE.

https://developer.arm.com/documentation/ka002253/latest

User Guide 72 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

5. Right-click on the mtb-example-psoc6-hello-world directory in the µVision Project view, and select Options
for Target '<application-name>' …

6. On the dialog, select the C/C++ (AC6) tab.

• Check that the Language C version was automatically set to c99.

• Select "AC5-like warnings" in the Warnings drop-down list.

• Select "-Os balanced" in the Optimization drop-down list.

User Guide 73 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

7. Select the Debug tab, and select KitProg3 CMSIS-DAP as an active debug adapter:

8. Click OK to close the Options dialog.

9. Select Project > Build target.

To suppress the linker warnings about unused sections defined in the linker scripts, add "6314,6329" to the

Disable Warnings setting in the Project Linker Options.

10. Connect the PSoC™ 6 kit to the host PC.

11. As needed, run the fw-loader tool to make sure the board firmware is upgraded to KitProg3. See KitProg3

User Guide for details. The tool is located in this directory by default:

<user_home>/ModusToolbox/tools_2.4/fw-loader/bin/

https://www.infineon.com/documentation/development-kitsboards/kitprog-user-guide
https://www.infineon.com/documentation/development-kitsboards/kitprog-user-guide

User Guide 74 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

12. Select Debug > Start/Stop Debug Session.

User Guide 75 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

You can view the system and peripheral registers in the SVD view.

6.2.4.3 To use KitProg3/MiniProg4, CMSIS-DAP, and ULink2 debuggers

1. Select the Device tab in the Options for Target dialog and check that M4 core is selected:

User Guide 76 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

2. Select the Debug tab and click "Settings" to display the dialog Target Driver Setup:

3. On the Target Driver Setup dialog, on the Debug tab, select the following:

• set Port to "SW"

• set Max Clock to "1 MHz"

• set Connect to "Normal"

• set Reset:

• For PSoC™ 6, to "VECTRESET"

• For PSoC™ 4 and PMG1, to "SYSRESETREQ"

• enable Reset after Connect option

User Guide 77 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

4. Select the Flash Download tab and select "Reset and Run" option after download, if needed:

5. Select the Pack tab and check if "Cypress.PSoC6_DFP" is enabled:

6.2.4.4 To use J-Link debugger

1. Make sure you have J-Link software version 6.62 or newer.

User Guide 78 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

2. Select the Debug tab in the Options for Target dialog, select J-LINK / J-TRACE Cortex as debug adapter, and
click "Settings":

3. Click OK in the Device selection message box:

4. Select appropriate target in Wizard:

User Guide 79 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

5. Go to Debug tab in Target Driver Setup dialog and select:

• set Port to "SW"

• set Max Clock to "1 MHz"

• set Connect to "Normal"

• set Reset to "Normal"

• enable Reset after Connect option

6. Select the Flash Download tab in Target Driver Setup dialog and select "Reset and Run" option after

download if needed:

User Guide 80 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

6.2.4.5 Program external memory

1. Download internal flash as described above.

Notice "No Algorithm found for: 18000000H - 1800FFFFH" warning.

2. Select the Flash Download tab in Target Driver Setup dialog and remove all programming algorithms for

On-chip Flash and add programming algorithm for External Flash SPI:

3. Download flash.

Notice warnings:

• No Algorithm found for: 10000000H - 1000182FH

• No Algorithm found for: 10002000H - 10007E5BH

• No Algorithm found for: 16007C00H - 16007DFFH

User Guide 81 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

6.2.4.6 Erase external memory

1. Select the Flash Download tab in Target Driver Setup dialog and remove all programming algorithms for
On-chip Flash and add programming algorithm for External Flash SPI:

2. Click Flash > Erase in menu bar.

User Guide 82 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

6.3 Patched flashloaders for AIROC™ CYW208xx devices

To enable support for different QSPI settings, the ModusToolbox™ QSPI Configurator patches flashloaders and
stores FLM files for them in the application directory. When exporting such applications to 3rd party IDEs (for

example, Keil µVision or IAR EWARM), these patched flashloader files must be copied into the appropriate 3rd
party IDE directory.

1. Copy the flashloader file located in the <app-dir>\libs\<Kit-

Name>\COMPONENT_BSP_DESIGN_MODUS\GeneratedSource directory.

• For Keil µVision, copy the CYW208xx_SMIF.FLM file.

• For IAR EWARM, copy the CYW208xx_SMIF.out file.

2. Paste the flashloader file as follows:

• For Keil µVision, paste to the C:\Users\<User-

Name>\AppData\Local\Arm\Packs\Cypress\CYW208xx_DFP\<Version>\Flash directory.

• For IAR EWARM, paste to the C:\Program Files\IAR Systems\Embedded Workbench

9.0\arm\config\flashloader\Infineon\CYW208XX directory.

3. Also, to use the SEGGER J-Link debugger, paste the CYW208xx_SMIF.FLM file to the C:\Program

Files\SEGGER\JLink\Devices\Cypress\cat1b directory.

6.4 Generating files for XMC™ Simulator tool

For the XMC1100, XMC1200, XMC1300, and XMC1400 families of devices, you can generate an archive file to

upload to the XMC™ Simulator tool (https://design.infineon.com/tinaui/designer.php) for simulation and

debugging. To do this:

Specify the CY_SIMULATOR_GEN_AUTO=1 variable as follows:

• Edit the application Makefile to add the CY_SIMULATOR_GEN_AUTO=1 variable, and then build the

application, or

• Add the variable on the command line: make build CY_SIMULATOR_GEN_AUTO=1

When the build completes, it generates an archive file (<application-name>.tar.tgz) in the <Application-
Name>\build\<Kit-Name>\Debug directory, and the build message displays the URL to the appropriate

simulator tool. For example:

==

= Generating simulator archive file =

==

The Infineon online simulator link:

https://design.infineon.com/tinaui/designer.php?path=EXAMPLESROOT%7CINFINEON%7CApp

lications%7CIndustrial%7C&file=mcu_XMC1200_Boot_Kit_MTB_v2.tsc

Simulator archive file C:/Users/XYZ/mtw2.4/5699/xmc-

2/Empty_XMC_App/build/KIT_XMC12_BOOT_001/Debug/mtb-example-xmc-empty-app.tar.tgz

successfully generated

• If using the Eclipse IDE, click the link in the Quick Panel under Tools to open the XMC™ Simulator tool in the

default web browser.

• If building with the command line, open a web browser to the URL displayed in the output message.

Upload the generated archive file to the XMC™ Simulator tool, and follow the tool's instructions for using the

tool as appropriate.

https://design.infineon.com/tinaui/designer.php

User Guide 83 of 84 002-29893 Rev. *N

 2022-04-07

ModusToolbox™ user guide

Revision history

Revision history

Date Revision Description of change

3/24/2020 ** New document.

3/27/2020 *A Updates to screen captures and associated text.

4/1/2020 *B Fix broken links.

4/29/2020 *C Fix incorrect link.

8/28/2020 *D Updates for ModusToolbox™ 2.2.

9/23/2020 *E Corrections to Build system and Board support packages chapters.

9/29/2020 *F Added links to KBAs; updated text for cyignore.

10/2/2020 *G Added details for BTSDK v2.8 BSPs/libraries.

1/14/2021 *H Updated Manifest chapter and fixed broken links.

3/23/2021 *I Updates for ModusToolbox™ 2.3.

5/24/2021 *J Updated information for creating a custom BSP.

9/27/2021 *K Updates for ModusToolbox™ 2.4.

11/29/2021 *L Merged chapter 3 (software overview) into chapter 1 (introduction).

Updated sections 6.2.3 and 6.2.4 with notes and minor details.

Added section 6.3 with information for patched flashloaders and 3rd party IDEs.

2/24/2022 *M Added link to PSoC™ 4 Application Note.

4/7/2022 *N Updated various links to the Infineon website.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-04-07

002-29893 Rev. *N

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2022 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics ("Beschaffenheitsgarantie") .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement of
intellectual property rights of any third party.

In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and standards
concerning customer’s products and any use of the
product of Infineon Technologies in customer’s
applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/

	About this document
	Table of contents
	1 Introduction
	1.1 What is ModusToolbox™ software?
	1.2 Run-time software
	1.2.1 Code examples
	1.2.2 Libraries (middleware)
	1.2.2.1 Common library types:
	1.2.2.2 AIROC™ Bluetooth® Libraries:
	1.2.2.3 BSP-specific base libraries:
	1.2.2.4 PSoC™ 6 additional libraries:

	1.2.3 BSPs
	1.2.3.1 Supported devices
	1.2.3.2 BSP releases

	1.3 Development tools
	1.3.1 Directory structure
	1.3.2 Documentation
	1.3.2.1 Release notes
	1.3.2.2 Top-level documents
	1.3.2.3 Document index page

	1.3.3 IDE support
	1.3.4 Tools
	1.3.4.1 Configurators
	1.3.4.2 Other tools
	1.3.4.3 Utilities
	1.3.4.4 Build system infrastructure
	1.3.4.5 Program and debug support

	1.4 Product versioning
	1.4.1 General philosophy
	1.4.2 Tools package versioning
	1.4.3 Multiple tools versions installed
	1.4.4 Specifying alternate tools version
	1.4.4.1 Environment variable
	1.4.4.2 Specific project Makefile

	1.4.5 Tools and configurators versioning
	1.4.5.1 Configurator messages

	1.4.6 GitHub libraries versioning
	1.4.7 Dependencies between libraries
	1.4.7.1 Git repo dependencies via .mtb files
	1.4.7.2 Regular C dependencies via #include

	1.5 Partner ecosystems

	2 Getting started
	2.1 Install and configure software
	2.1.1 GUI set-up instructions
	2.1.2 CLI set-up instructions

	2.2 Get help
	2.2.1 GUI Ddocumentation
	2.2.1.1 Eclipse IDE
	2.2.1.2 Configurator and tool guides

	2.2.2 Command line documentation
	2.2.2.1 make help
	2.2.2.2 CLI tools

	2.3 Create applications
	2.3.1 Project Creator tools
	2.3.1.1 Project Creator GUI
	2.3.1.2 project-creator-cli

	2.3.2 git clone
	2.3.3 Typical application contents
	2.3.3.1 Application directory
	2.3.3.2 mtb_shared directory

	2.4 Update BSPs and libraries
	2.4.1 Library Manager
	2.4.2 make getlibs

	2.5 Configure settings for devices, peripherals, and libraries
	2.5.1 Configurator GUI tools
	2.5.2 Configurator CLI tools

	2.6 Write application code
	2.6.1 Application layers
	2.6.1.1 HAL
	2.6.1.2 PDL
	2.6.1.3 Configurators

	2.7 Build, program, and debug
	2.7.1 Use Eclipse IDE
	2.7.2 Export to another IDE
	2.7.3 Use command line
	2.7.3.1 make build
	2.7.3.2 make program
	2.7.3.3 make debug/qdebug/attach

	3 ModusToolbox™ build system
	3.1 Overview
	3.2 Application types
	3.3 BSPs
	3.4 make getlibs
	3.4.1 repos

	3.5 Adding source files
	3.5.1 Auto-discovery
	3.5.1.1 .cyignore
	3.5.1.2 TOOLCHAIN_<NAME>
	3.5.1.3 TARGET_<NAME>
	3.5.1.4 CONFIG_<NAME>
	3.5.1.5 COMPONENT_<NAME>
	3.5.1.6 BSP makefile
	3.5.1.7 Multi-project application with imported BSP

	3.6 Pre-builds and post-builds
	3.7 Program and debug
	3.8 Available make targets
	3.8.1 General make targets
	3.8.2 IDE make targets
	3.8.3 Tools make targets
	3.8.4 Utility make targets

	3.9 Available make variables
	3.9.1 Basic configuration make variables
	3.9.2 Advanced configuration make variables
	3.9.3 BSP make variables
	3.9.4 Getlibs make variables
	3.9.5 Path make variables
	3.9.6 Miscellaneous make variables

	4 Board support packages
	4.1 Overview
	4.2 What’s in a BSP
	4.2.1 COMPONENT_BSP_DESIGN_MODUS
	4.2.2 COMPONENT
	4.2.3 deps subdirectory
	4.2.4 docs subdirectory
	4.2.5 Support files
	4.2.6 <BSP_NAME>.mk
	4.2.7 locate_recipe.mk
	4.2.8 README/RELEASE.md
	4.2.9 BTSDK-specific BSP files

	4.3 Creating your own BSP
	4.4 Modifying the BSP configuration for a single application

	5 Manifest files
	5.1 Overview
	5.2 Create your own manifest
	5.2.1 Overriding the standard super-manifest
	5.2.2 Secondary super-manifest
	5.2.3 Processing
	5.2.4 Conflicting data

	5.3 Using offline content
	5.4 Access private repositories

	6 Using applications with third-party tools
	6.1 Import to Eclipse
	6.2 Exporting to supported IDEs
	6.2.1 Overview
	6.2.2 Export to VS Code
	6.2.2.1 Prerequisites
	6.2.2.2 Process example
	6.2.2.3 To debug using KitProg3/MiniProg4
	6.2.2.4 To debug using J-Link

	6.2.3 Export IAR EWARM (Windows only)
	6.2.3.1 Prerequisites
	6.2.3.2 Process example
	6.2.3.3 To use KitProg3/MiniProg4
	6.2.3.4 To use MiniProg4 with PSoC™ 6 single core and PSoC™ 6 256K
	6.2.3.5 To use J-Link

	6.2.4 Export to Keil µVision 5 (Windows only)
	6.2.4.1 Prerequisites
	6.2.4.2 Process example
	6.2.4.3 To use KitProg3/MiniProg4, CMSIS-DAP, and ULink2 debuggers
	6.2.4.4 To use J-Link debugger
	6.2.4.5 Program external memory
	6.2.4.6 Erase external memory

	6.3 Patched flashloaders for AIROC™ CYW208xx devices
	6.4 Generating files for XMC™ Simulator tool

	Revision history

