Infineon

ModusToolbox™ user guide

Version

2.4.0

About this document

Scope and purpose

This guide provides information and instructions for using the ModusToolbox™ tools provided by the version
2.4.0 installer and the make build system. This document contains the following chapters:

e Chapter 1 describes ModusToolbox™ software.

e Chapter2 provides instructions for getting started using the ModusToolbox™ tools.

e Chapter 3 describes the ModusToolbox™ build system.

e Chapter4 covers different aspects of the ModusToolbox™ board support packages (BSPs).

e Chapter 5 explains the ModusToolbox™ manifest files and how to use them with BSPs, libraries, and code
examples.

e Chapter 6 provides instructions for using a ModusToolbox™ application with various integrated
development environments (IDEs).

Intended audience

This document helps application developers understand how to use all the tools included with ModusToolbox™
software.

Document conventions

Convention Explanation

Bold Emphasizes heading levels, column headings, menus and sub-menus

Italics Denotes file names and paths.

Courier New Denotes APIs, functions, interrupt handlers, events, data types, error handlers, file/folder names,
directories, command line inputs, code snippets

File > New Indicates that a cascading sub-menu opens when you select a menu item

Abbreviations and definitions
The following define the abbreviations and terms used in this document that you may not be familiar with:

e BSP-board support package

e PDL - peripheral driver library

e HAL - hardware abstraction layer
e WHD - Wi-Fi host driver

e WCM - Wi-Fi connection manager

User Guide Please read the Important Notice and Warnings at the end of this document 002-29893 Rev. *N
www.infineon.com page 1 of 84 2022-04-07

ModusToolbox™ user guide ‘ iﬁneon

Table of contents

Table of contents

1 INErOUCEION «ouuureniiiniiriiiiiniiitiiriiiiiiiteiiraiiteittnisraesnseissssrassssessnsssans 3
1.1 What is MOdUSTOOIDOX™ SOftWAIE?c.eeueeirierieieieietetetee sttt st s e st se e saens 3
1.2 RUN-TIME SOTEWATIE ...ttt e e et e s te s e et e e e e be s beeaesbeese e seesaestesbeensentessaassensenseanes 3
1.3 D1V (oY o 0 41T Y ol oo] E=3 PSSR 6
1.4 PrOAUCE VEISIONINEG c.eeuveeiieeieeeeeeeeteete et te e st e steste et e s se e e et e sseessasse e st essesseessessesssensesseessansesssessesseenses 13
15 P artNEr ECOSYSTEIMS .cneiitieieeitteeeetteeeeeitte e et e e sttt e se bt e e s ssreeessssaeesssssaeessssaaesasssesesssssesesssssesessssaeesns 17
2 (1=) T - o =T« Pt 18
2.1 Install and CONfIGUIE SOFEWAIE c.....euiiuiieieiieeeereee et sttt et sbe e 18
2.2 L1 =T o OSSR 19
2.3 (O1g =T LI T o] o] L Tof- | A o) o 3 USSR 20
2.4 Update BSPS and LIDIariesccceieiieieciereeeeeseeee ettt te et ee st e e e e e sesre s e et e ssnessessesnsennnesaenses 24
2.5 Configure settings for devices, peripherals, and libraries...........cocvevevevevnnienenenenesceeeeeesene 26
2.6 LT LN o] o] o= Y o] g I ol o [N RS S 28
2.7 Build, program, and deDUEccueueiririrerireeeeee ettt et et sae 29
3 ModusToOlboX™ BUIld SYStEM .. cuciiiuiiiiiiiiiaiianinieeceitasiessecscastssssssecsssasssssscsscassssssssscsssssssssscsssas 32
31 OVEIVIEW ..ttt ettt et et s et b et e et e s bt et e e b e e at e b e e bt et e st s at e s e sbeeae e b e eatensesateatessesmtensesatensesneeneenes 32
3.2 FaY o] o LTtz YuToT 0 i 07/ 01T USRS 32
3.3 B O P S ittt s e st e s bt e et e e s e e e a b e e s b e e s bt e e b e e s ar e e s ba e s st e e snsae s Rt e e s bae s neaesnreesnrreeas 33
3.4 MAKE GELLDS ..ttt ettt b ettt se e s eaeas 33
3.5 AAING SOUICE fIlES cuveuveniiuieieiriieeeerer ettt ettt ettt et e eae s s e sbe b enteee e eneeseesenes 34
3.6 Pre-builds and pOSt-DUILAS.......ccviriieieiereeeeeeee ettt s e e s e aesreerneneeesneneas 36
3.7 Program and DUc.ouiiiiieceeee ettt sttt st ettt sttt st ba s e aeeaaents 37
3.8 AVQILADIE MAKE TAIZETS. ...eeieiiriirieetertertertete ettt ettt sttt ettt et st b s b sbe b e sbe s e e e e eneesenee 37
3.9 AVailable MaKe Variablescoeeeririerieieieeeeee sttt ettt sttt 40
4 Board SUPPOIt PACKAZES.ccucteiteiriretasresrecsecasressessecsstsssessesssrsssssssnssns 48
4.1 OVEIVIEW .ttt sttt et et s et s bt et et s bt et e s bt e ae e b e e bt et e b e e at et e sbt et e b e eat e s e eateabesseentesesatensenseeneenes 48
4.2 L T T g 1 = TR 48
4.3 Creating YOUIr OWN BSPco.uiiiiiiieiteietteteie sttt ettt et sbe st et s bt et e b st e s e eat et e s bt et e sbesatensesneeneenes 50
4.4 Modifying the BSP configuration for a single applicationccceevuevienieieenienienenenee e 51
5 ManIfest fileS ..cccirireiiiiiriiiniiiiiieiiniiiiiiniiieiieiineiresincisesteiisssestacsesretsesssssssssessasssssssssascsessassassss 54
5.1 OVBIVIBW .ttt et s et et e st esat e s st e st e st e s be s be s st e aeesatesabesaseesseesseesatesasesasesssassseessesasesnsesseenseennees 54
5.2 Create YOUr OWN MaNIfEST... ittt te e te s e te s e s e e s e sre et e sseensessassnensessasneenes 54
5.3 USING OFfliNG CONTENT ...ttt ettt se st sr e s e e st e saeessassessnesaeensensas 57
5.4 ACCESS PriVAte FEPOSITOMIESvviiiieeeiieeeieeecte et eeteeeete e st esste e e bee s rae e s beesssteeesseessseessssesenseeesseessseeenns 58
6 Using applications with third-party tools.......ccccciiuiiiiiniiniiiiiniinininniniinnincinenieniscinesreccsssesssecses 59
6.1 Taa] oY) o Co N <ol I o 11T PSR RPPRURUPRRPRRON 59
6.2 EXPOrting t0 SUPPOIEA IDESc.ciiiieieieeteeeteee ettt ettt et ettt sae et et sae e te s e e sae e ees 60
6.3 Patched flashloaders for AIROC™ CYW208XX AEVICESccueruirrrererniinrerieenieseeniesseessesseseessessesssessesssenses 82
6.4 Generating files for XMC™ Simulator tOOL.......cveeeririerieirieeeeresereeeetee ettt 82
User Guide 20f84 002-29893 Rev. *N

2022-04-07

o _.
ModusToolbox™ user guide |nf| neon

Introduction

1 Introduction

This chapter provides an overview of the ModusToolbox™ software environment, which provides support for
many types of devices and ecosystems.

1.1 What is ModusToolbox™ software?

ModusToolbox™ software is a modern, extensible development environment supporting a wide range of
Infineon microcontroller devices. It provides a flexible set of tools and a diverse, high-quality collection of
application-focused software. These include configuration tools, low-level drivers, libraries, and operating
system support, most of which are compatible with Linux-, macOS-, and Windows-hosted environments.

The following diagram shows a very high-level view of what is available as part of ModusToolbox™ software.
This is not a comprehensive list. It merely conveys the idea that there are multiple resources available to you.

@ Tools
L
- q
.g Code Examples Reference Designs Project
- Creator
Q.
<
¢ Human-Machine : - : Manager
)
g Interface Graphics Connectivity Security
% Eclipse and
.'é’ Voice /Audio Machine Learning Wi-Fi Bluetooth® partner IDEs
Configurators
and Tuners
™
£ PSoC™ XMC™ UsB Coﬁ':ifivit AIROC™ e
4 MCU MCU Controllers y Bluetooth® 1 and Hake
Processor build system

ModusToolbox™ software does not include proprietary tools or custom build environments. This means you
choose your compiler, your IDE, your RTOS, and your ecosystem without compromising usability or access to
our industry-leading CAPSENSE™, AIROC™ Wi-Fi and Bluetooth®, security, and various other features.

Another important aspect of the ModusToolbox™ software is that each product is versioned. This ensures that
each product can be updated on an ongoing basis, but it also allows you to lock down specific versions of the
tools for your specific environment. See Product versioning for more details.

1.2 Run-time software

ModusToolbox™ tools also include an extensive collection of GitHub-hosted repos comprising Code Examples,
BSPs, plus middleware and applications support. We release run-time software on a quarterly "train model"
schedule, and access to new or updated libraries typically does not require you to update your ModusToolbox™
installation.

New projects start with one of our many Code examples that showcase everything from simple peripheral
demonstrations to complete application solutions. Every Infineon kit is backed by a comprehensive BSP
implementation that simplifies the software interface to the board, enables applications to be re-targeted to
new hardware in no time, and can be easily extended to support your custom hardware without the usual
porting and integration hassle.

User Guide 30f84 002-29893 Rev. *N
2022-04-07

https://github.com/Infineon
https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software

ModusToolbox™ user guide ‘ iﬁneon

Introduction

The extensive middleware collection includes an ever-growing set of sensor interfaces, display support, and
connectivity-focused libraries. The ModusToolbox™ installer also conveniently bundles packages of all the
necessary run-time components you need to leverage the following key Infineon technology focus areas:

e CAPSENSE™ technology

e AnyCloud (AIROC™ Wi-Fi and Bluetooth® applications)
e Machine Learning

e Device Security (PSoC™ 64 "Secure Boot" MCU)

1.2.1 Code examples

All current ModusToolbox™ examples can be found through the GitHub code example page. There you will find
links to examples for the Bluetooth® SDK, PSoC™ 6 MCU, PSoC™ 4 device, among others. For most code
examples examples, you can use git clone or the Project Creator tool to create an application and use it directly
with ModusToolbox™ tools. For some examples, like Mbed OS, you will need to follow the directions in the code
example repository to instantiate the example. Instructions vary based on the nature of the application and the
targeted ecosystem.

In the ModusToolbox™ build infrastructure, any example application that requires a library downloads that
library automatically.

You can control the versions of the libraries being downloaded and also their location on disk, and whether
they are shared or local to the application. Refer to the Library Manager user guide for more details.

1.2.2 Libraries (middleware)

In addition to the code examples, there are many other parts of ModusToolbox™ that are provided as libraries.
These libraries are essential for taking full advantage of the various features of the various devices. When you
create a ModusToolbox™ application, the system downloads all the libraries your application needs. See
ModusToolbox™ build system chapter to understand how all this works.

All current ModusToolbox™ libraries can be found through the GitHub ModusToolbox™ software page. A
ModusToolbox™ application can use different libraries based on the Active BSP. In general, there are several
categories of libraries. Each library is delivered in its own repository, complete with documentation.

1.2.2.1 Common library types:
Most BSPs have some form of the following types of libraries:

e Abstraction Layers - This is usually the RTOS Abstraction Layer.
e Base Libraries - These are core libraries, such as core-lib and core-make.
e Board Utilities - These are board-specific utilities, such as display support or BTSpy.

e MCU Middleware - These include MCU-specific libraries such as freeRTOS or Clib support.

1.2.2.2 AIROC™ Bluetooth® Libraries:

For the AIROC™ Bluetooth® BSPs, there specific libraries that do not apply to any other BSPs, including:

e BTSDK Chip Libraries

e BTSDK Core Support

e BTSDK Shared Source Libraries

e BTSDK Utilities and Host/Peer Apps

User Guide 4 0of 84 002-29893 Rev. *N
2022-04-07

https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software
https://www.infineon.com/ModusToolboxLibraryManager
https://github.com/Infineon/modustoolbox-software#libraries

ModusToolbox™ user guide ‘ iﬁneon

Introduction

1.2.2.3 BSP-specific base libraries:

BSP-specific libraries include mtb-hal, mtb-pdl, and recipe-make. Some of these are identified as device-
specific using the following categories:

e catl/catla=PSoC™ 6 MCUs (mtb-hal-catl, recipe-make-catla, etc.)

e cat2=PSoC™4 devices and XMC ™ Industrial MCUs (mtb-hal-cat2, mtb-pdl-cat2)

e cat3=XMC™Industrial MCUs (recipe-make-cat3)

1.2.2.4 PSoC™ 6 additional libraries:

Due to the nature of the PSoC™ 6 MCU, plus the combo devices, certain PSoC™ 6 BSPs have additional libraries,
including:

e Bluetooth® Middleware Libraries - These are for the BTStack and Bluetooth® FreeRTOS.

e PSoC™6 Middleware - These are libraries specific to the PSoC™ 6 MCU, such as EMEEPROM and DFU.

o Wi-Fi Middleware Libraries - These are libraries for AnyCloud applications on a PSoC™ 6 MCU with AIROC™
CYW43xxx Wi-Fi & Bluetooth® combo chip.

1.2.3 BSPs

The BSP is a central feature of ModusToolbox™ software. The BSP specifies several critical items for the
application, including:

e hardware configuration files for the device (for example, design.modus)

o startup code and linker files for the device

e other libraries that are required to support a kit

BSPs are aligned with our development/evaluation kits; they provide files for basic device functionality. A BSP
typically has a design.modus file that configures clocks and other board-specific capabilities. That file is used by

the ModusToolbox™ configurators. A BSP also includes the required device support code for the device on the
board. You can modify the configuration to suit your application.

1.2.3.1 Supported devices
ModusToolbox™ software supports development on the following Arm Cortex-M devices.

e AIROC™ Wi-Fi and Bluetooth® chips
e PMG1 USB-C Power Delivery Microcontroller

e PSoC™4 Configurable Microcontroller (See AN79953: Getting Started with PSoC™ 4 for the supported
PSoC™ 4 devices.)

e PSoC™6MCU
e PSoC™64 "Secure Boot" MCU

e XMC™Industrial Microcontroller

User Guide 50f 84 002-29893 Rev. *N
2022-04-07

https://www.infineon.com/dgdl/Infineon-AN79953_Getting_Started_with_PSoC_4-ApplicationNotes-v21_00-EN.pdf?fileId=8ac78c8c7cdc391c017d07271fd64bc1&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-files

ModusToolbox™ user guide ‘ iﬁﬂ eon

Introduction

1.2.3.2 BSP releases

We release BSPs independently of ModusToolbox™ software as a whole. This search link finds all currently
available BSPs on our GitHub site.

The search results include links to each repository, named TARGET_kitnumber. For example, you will find links
to repositories like TARGET CY8CPROTO-062-4343W. Each repository provides links to relevant
documentation. The following links use this BSP as an example. Each BSP has its own documentation.

The information provided varies, but typically includes one or more of:

e an APl reference for the BSP

e the BSP overview

e alink to the associated kit page with kit-specific documentation

A BSP is specific to a board and the device on that board. For custom development, you can create or modify a
BSP for your device. See the Board support packages chapter for how they work and how to create your own for
a custom board.

1.3 Development tools

The ModusToolbox™ tools package provides you with all the desktop products needed to build sophisticated,
low-power embedded, connected and loT applications. The tools enable you to create new applications
(Project Creator), add or update software components (Library Manager), set up peripherals and middleware
(Configurators), program and debug (OpenOCD and Device Firmware Updater), and compile (GNU C compiler).

Infineon Technologies understands that you want to pick and choose the tools and products to use, merge
them into your own flows, and develop applications in ways we cannot predict. That’s why ModusToolbox™
software is not a monolithic, proprietary software tool that dictates the use of any particular IDE.

For convenience, the tools package installation includes the Eclipse IDE for ModusToolbox™. However, we fully
support the following IDEs and their corresponding compiler technology, so you are free to develop the way
you wish:

e Microsoft Visual Studio Code (VS Code)

e |AREmbedded Workbench (EW-ARM)

e Arm Microcontroller Developers Kit (uVision 5)

For detailed instructions developing ModusToolbox™ applications with third-party IDEs, see the Exporting to
supported IDEs chapter in this guide.

The ModusToolbox™ tools package installer provides required and optional core resources for any application.
This section provides an overview of the available resources:

e Directory structure

e Documentation

e |DE support
e Tools

The installer does not include code examples or libraries, but it does provide the tools to access them.

User Guide 6 of 84 002-29893 Rev. *N
2022-04-07

https://github.com/Infineon?q=TARGET_
https://github.com/Infineon/TARGET_CY8CPROTO-062-4343W
https://infineon.github.io/TARGET_CY8CPROTO-062-4343W/html/modules.html
https://github.com/Infineon/TARGET_CY8CPROTO-062-4343W
https://www.infineon.com/documentation/development-kitsboards/psoc-6-wi-fi-bt-prototyping-kit-cy8cproto-062-4343w
https://softwaretools.infineon.com/tools/com.ifx.tb.tool.modustoolbox

ModusToolbox™ user guide ‘ iﬁﬂ eon

Introduction

1.3.1 Directory structure

Refer to the ModusToolbox™ installation guide for information about installing ModusToolbox™. Once it is
installed, the various ModusToolbox™ top-level directories are organized as follows:

b ModusToolbox
docs 2.3
docs 2.4
ide_2.3
ide_2.4
tools_2.3
tools_2.4

Note: This image shows ModusToolbox™ versions 2.3 and 2.4 installed. Your installation may only
include ModusToolbox™ version 2.4. Refer to the Product versioning section for more details.

The ModusToolbox directory contains the following subdirectories for version 2.4:

e docs_2.4 - Thisis the top-level documentation directory. It contains various top-level documents and an
html file with links to documents provided as part of ModusToolbox™ software. See Documentation for
more information.

e ide_2.4:

o eclipse (or ModusToolbox.app on macOS) - This contains the optional Eclipse IDE for
ModusToolbox™. It includes the ModusToolbox™ perspective, application management, code authoring
and editing, build tools, and debug capabilities. The IDE supports the C and C++ programming
languages. It includes the GCC Arm build tools. It supports debugging via OpenOCD or J-Link. For more
details, refer to the Eclipse IDE for ModusToolbox™ software user guide.

o tools_2.4: This contains all the various tools and scripts installed as part of ModusToolbox™. See Tools for
more information.

1.3.2 Documentation

The docs directory contains top-level documents and an HTML document with links to all the documents
included in the installation and on the web.

1.3.2.1 Release notes

For the 2.4 release, the release notes document is for all of the ModusToolbox™ software included in the
installation.

1.3.2.2 Top-level documents

This folder contains the Eclipse IDE documentation, the ModusToolbox™ software installation guide, and this
user guide. These guides cover different aspects of using the IDE and various ModusToolbox™ tools.

User Guide 7of 84 002-29893 Rev. *N
2022-04-07

http://www.infineon.com/ModusToolboxInstallGuide
https://www.infineon.com/MTBEclipseIDEUserGuide

o _.
ModusToolbox™ user guide |nf| neon

Introduction

1.3.2.3 Document index page

The doc_landing.html file provides links to all the documents included in the installation and on the web. This
file is also available from the IDE Help menu.

ModusToolbox™ 2.4 documentation

This page provides brief descriptions and links to various types of documentation included as part the ModusToolbox™ software.

Note: Many of these documents are provided online at the ModusToolbox™ website. Also, some of the documents online might be more current than versions installed on disk.

Getting started documents

This section contains general documents to install and use ModusToolbox™ software, as well as use the provided Eclipse IDE.

ModusToolbox™ installation guide This document describes how to install the ModusToolbox™ software on Windows, Linux, and macOS.

ModusToolbox™ tools package This document lists and describes features for this release of ModusToolbox™. It also includes known issues and workarounds and important design
release notes impacts you should know.

This document provides an overall user guide for ModusToolbox™ GUI and CLI tools, including getting started and exporting to various IDEs, including

. .
MedusToolbox™ user guide Visual Studio Code, IAR Embedded Workbench, and Keil pVision.

This is a comprehensive collection of information and exercises to help you learn how to use ModusToolbox™ software. It uses the CYSCKIT-062-43012

Training material on GitHub kit to demonstrate a variety of applications and features including MCU peripherals, FreeRTOS, Wi-Fi, Bluetooth®, and low power.

Eclipse IDE quick start guide This is a short step-by-step guide specifically for using the Eclipse-based IDE to create and build applications.
Eclipse IDE user guide This guide also focuses on the Eclipse IDE, covering more details about the IDE and software features.
Eclipse survival guide This document is also online only. It offers tips on using the Eclipse environment.

EULA End user license agreement; provided on disk as part of installation.

Configurator and tool documents

These documents are located in the "tools" directory in each individual configurator and tool "docs” subfolder.

1.3.3 IDE support

The ModusToolbox™ installer includes an optional Eclipse IDE that is a full-featured, cross-platform IDE. The
ModusToolbox™ build system also provides support for Visual Studio (VS) Code, IAR Embedded Workbench,
and Keil pVision. See the Exporting to supported IDEs chapter for more details.

User Guide 8of 84 002-29893 Rev. *N
2022-04-07

o~ _.
ModusToolbox™ user guide |nf|ne0n

Introduction

1.3.4 Tools

The tools_2.4 directory includes the following configurators, tools, and utilities:

v tools_2.4
bt-configurator
capsense-configurator
cymcuelftocl-1.0
device-configurator
dfuh-tool
driver_media
ez-pd-configurator
fw-loader
gec
jre
library-manager
lin-configurator
make
mil-configurator
ml-coretools
ml-inference-regression-app
modus-shell
openccd
project-creator
proxy-helper
python
gspi-configurator
secure-policy-configurator
seglcd-configurator

smartio-configurator

ushdev-configurator

1.3.4.1 Configurators

Each configurator is a cross-platform tool that allows you to set configuration options for the corresponding
hardware peripheral or library. When you save a configuration, the tool generates the C code and/or a
configuration file used to initialize the hardware or library with the desired configuration.

Configurators are independent of each other, but they can be used together to provide flexible configuration
options. They can be used stand alone, in conjunction with other configurators, or as part of a complete
application. All of them are installed during the ModusToolbox™ installation. Each configurator provides a
separate guide, available from the configurator's Help menu.

Configurators perform tasks such as:

e Displaying a user interface for editing parameters
e Setting up connections such as pins and clocks for a peripheral

e Generating code to configure middleware
Note: Some configurators may not be useful for your application.
Configurators store configuration data in an XML data file that provides the desired configuration. Each

configurator has a "command line" mode that can regenerate source based on the XML data file. Configurators
are divided into two types: BSP Configurators and Library Configurators.

User Guide 90f 84 002-29893 Rev. *N
2022-04-07

o _.
ModusToolbox™ user guide |nf| neon

Introduction

The following diagram shows a high-level view of the configurators that could be used in a typical application.

| Application ‘

— main.c

TARGET_<BSP_NAME>

BSP Configurators
COMPONENT_BSP_DESIGN_MODUS
| design.modus - —_ Device g - Smart|/0
en - " | Configurator | Configurator
[
e —
design.cyqspi - ~ | Configurator
I [
. . SeglLCD
design.cysegled ~ | Configurator
I I I
— design.cycapsense - CAPSENSE™ | o
gh.cycap o et Configurator :_ ____________________ B CAPSENSE™
Tuner
.c/.hfiles [T 1
GeneratedSource H—d—d—‘—l—l—/

Library Configurators

Bluetooth®
Configurator

y

— design.cybt -t >

USB
Configurator

Y

— design.cyushdev -

— design.cylin - > ‘LIN >
Configurator
‘ ML
— d .mtbml - : >
esign.mtbm - Configurator "
L) ‘ _ EZ-PD™ .
esign.cyezp - Configurator o
- ioy?
— design.secure -t i >

Configurator

.c/.hfiles

GeneratedSource

BSP configurators

BSP configurators configure the hardware on a specific device. This can be a board provided by us, a partner, or
a board that you create that is specific to your application. Some of these configurators interact with the
design.modus file to store and communicate configuration settings between different configurators. Code
generated by a BSP Configurator is stored in a directory named GeneratedSource, which is in the same directory
as the design.modus file. This is generally located in the BSP for a given target board. Some of the BSP
configurators include:

¢ Device Configurator: Set up the system (platform) functions such as pins, interrupts, clocks, and DMA, as
well as the basic peripherals, including UART, Timer, etc. Refer to the Device Configurator guide for more
details.

e CAPSENSE™ Configurator: Configure CAPSENSE™ hardware, and generate the required firmware. This
includes tasks such as mapping pins to sensors and how the sensors are scanned. Refer to the CAPSENSE™
Configurator guide for more details.

User Guide 10 of 84 002-29893 Rev. *N
2022-04-07

https://www.infineon.com/ModusToolboxDeviceConfig
https://www.infineon.com/ModusToolboxCapSenseConfig
https://www.infineon.com/ModusToolboxCapSenseConfig

ModusToolbox™ user guide ‘ iﬁneon

Introduction

There is also a CAPSENSE™ Tuner to adjust performance and sensitivity of CAPSENSE™ widgets on the
board connected to your computer. Refer to the CAPSENSE™ Tuner guide for more details.

e QSPI Configurator: Configure external memory and generate the required firmware. This includes defining
and configuring what external memories are being communicated with. Refer to the QSPI Configurator
guide for more details.

e Smart /0 Configurator: Configure the Smart I/0. This includes Chip, I/O, Data Unit, and LUT signals
between port pins and the HSIOM. Refer to the Smart 1/O Configurator guide for more details.

e SeglLCD Configurator: Configure LCD displays. This configuration defines a matrix Seg LCD connection and
allows you to setup the connections and easily write to the display. Refer to the SegLCD Configurator guide
for more details.

Library configurators

Library configurators support configuring application middleware. Library configurators do not read nor
depend on the design.modus file. They generally create data structures to be consumed by software libraries.
These data structures are specific to the software library and independent of the hardware. Configuration data
is stored in a configurator-specific XML file (for example, *.cybt, *.cyusbdev, etc.). Any source code generated by
the configurator is stored in a GeneratedSource directory in the same directory as the XML file. The Library
configurators include:

o Bluetooth® Configurator: Configure Bluetooth® settings. These include options for specifying what
services and profiles to use and what features to offer by creating SDP and/or GATT databases in generated
code. This configurator supports both PSoC™ MCU and AIROC™ Bluetooth® applications. Refer to the
Bluetooth® configurator guide for more details.

e USB Configurator: Configure USB settings and generate the required firmware. This includes options for
defining the Device Descriptor and Settings. Refer to the USB Configurator guide for more details.

e LIN Configurator: Configure various LIN settings, such as frames and signals, and generate the required
firmware. Refer to the LIN Configurator guide for more details.

e Machine Learning (ML) Configurator: Accept a pretrained ML model and generate an embedded model
(as a library), which can be used along with your application code for a target device. Refer to the ML
configurator guide for more details.

e EZ-PD™ Configurator: Configure the features and parameters of the PDStack middleware for PMG1 family
of devices. Refer to the EZ-PD™ Configurator guide for more details.

e "Secure Policy" Configurator: Open, create, and change policy configuration files for PSoC™ 64 "Secure
Boot" MCU devices. Refer to the "Secure Policy" Configurator guide for more details.

1.3.4.2 Other tools

ModusToolbox™ software includes other tools that provide support for application creation, device firmware
updates, and so on. All tools are installed by the ModusToolbox™ tools package installer. With rare exception
each tool has a user guide located in the docs directory beside the tool itself. Most user guides are also available
online.

Other tools Details Documentation
project-creator | Create a new application. This tool is a stand-alone tool, available as a GUl and a user guide

command-line tool (CLI).

library-manager | Add, remove, or update libraries and BSP used in an application; edits the Makefile | user guide

User Guide 110f 84 002-29893 Rev. *N
2022-04-07

https://www.infineon.com/ModusToolboxCapSenseTuner
https://www.infineon.com/ModusToolboxQSPIConfig
https://www.infineon.com/ModusToolboxQSPIConfig
https://www.infineon.com/ModusToolboxSmartIOConfig
http://www.infineon.com/ModusToolboxSegLCDConfig
https://www.infineon.com/ModusToolboxBLEConfig
https://www.infineon.com/ModusToolboxUSBConfig
https://www.infineon.com/ModusToolboxLINConfig
https://www.infineon.com/ModusToolboxMLConfig
https://www.infineon.com/ModusToolboxMLConfig
https://www.infineon.com/ModusToolboxEZ-PDConfig
https://www.infineon.com/ModusToolboxSecurePolicyConfig
https://softwaretools.infineon.com/tools/com.ifx.tb.tool.modustoolbox
http://www.infineon.com/ModusToolboxProjectCreatorGuide
http://www.infineon.com/ModusToolboxLibraryManagerGuide

o~ _.
ModusToolbox™ user guide |nf|ne0n

Introduction
Other tools Details Documentation
cymcuelftool Merges CM0+ and CM4 application images into a single executable. Typically user guide isin
launched from a post-build script. This tool is not used by most applications. the tool’s docs
directory
dfuh-tool Use the Device Firmware Update Host tool to communicate with a PSoC™ 6 MCU user guide

that has already been programmed with an application that includes device
firmware update capability. Provided as a GUI and a command-line tool.
Depending on the ecosystem you target, there may be other over-the-air firmware
update tools available.

1.3.4.3 Utilities

ModusToolbox™ software includes some additional utilities that are often necessary for application
development. In general, you use these utilities transparently.

Utility Description

GCC Supported toolchain included with the ModusToolbox™ installer.

GDB The GNU Project Debugger is installed as part of GCC.

JRE Java Runtime Environment; required by the Eclipse IDE integration layer.

1.3.4.4 Build system infrastructure

The build system infrastructure is the fundamental resource in ModusToolbox™ software. It serves three
primary purposes:

e create an application, update and clone dependencies

e create an executable

e provide debug capabilities
A Makefile defines everything required for your application, including:

e target hardware (board/BSP to use)

e source code and libraries to use for the application

e ModusToolbox™ tools version, as well as compiler toolchain to use

e compiler/assembler/linker flags to control the build

e assorted variables to define things like file and directory locations

The build system automatically discovers all .c, .h, .cpp, .s, .a, .o files in the application directory and
subdirectories, and uses them in the application. The Makefile can also discover files outside the application

directory. You can add another directory using the cY SHAREDLIB PATH variable. You can also explicitly list
filesin the SOURCES and INCLUDES make variables.

Each library used in the application is identified by a.mtb file. This file contains the URL to a git repository, a
commit tag, and a variable for where to put the library on disk. For example, a capsense.mtb file might contain
the following line:

http://github.com/cypresssemiconductorco/capsensef#latest-
v2.X#$SSASSET REPOSS/capsense/latest-v2.X

The build system implements the make getlibs command. This command finds each.mtb file, clones the
specified repository, checks out the specified commit, and collects all the files into the specified directory.
Typically, themake getlibs command isinvoked transparently when you create an application or use the

User Guide 12 of 84 002-29893 Rev. *N
2022-04-07

https://www.infineon.com/ModusToolboxDFUHostTool

ModusToolbox™ user guide

infineon

Introduction

Library Manager, although you can invoke the command directly from a command line interface. See
ModusToolbox™ build system for detailed documentation on the build system infrastructure.

1.3.4.5 Program and debug support

ModusToolbox™ software supports the Open On-Chip Debugger (OpenOCD) using a GDB server, and supports
the J-Link debug probe. For the Mbed OS ecosystem, ModusToolbox™ supports Arm Mbed DAPLink.

You can use various IDEs to program devices and establish a debug session (see Exporting to supported IDEs).
For programming, CYPRESS™ Programmer is available separately. It is a cross-platform application for
programming PSoC™ 6 devices. It can program, erase, verify, and read the flash of the target device.

Cypress Programmer and the Eclipse IDE use KitProg3 low-level communication firmware. The firmware loader
(fw-loader) is a software tool you can use to update KitProg3 firmware, if you need to do so. The fw-loader tool
is installed with the ModusToolbox™ software. The latest version of the tool is also available separately in a
GitHub repository.

Tool Description Documentation
CYPRESS™ CYPRESS™ Programmer functionality is built into ModusToolbox™ Software. | Programming tools
Programmer CYPRESS™ Programmer is also available as a stand-alone tool. page, go to the
documentation tab
fw-loader A simple command line tool to identify which version of KitProg is on a kit, readme.txt file in
and easily switch back and forth between legacy KitProg2 and current the tool directory
KitProg3.
KitProg3 This tool is managed by fw-loader, it is not available separately. KitProg3isa | user guide
low-level communication/debug firmware that supports CMSIS-DAP and
DAPLink (for Mbed 0S). Use fw-loader to upgrade your kit to KitProg3, if
needed.
OpenOCD Our specific implementation of OpenOCD is installed with ModusToolbox™ developer’s guide
software.
DAPLink Support is implemented through KitProg3 DAPLink handbook
1.4 Product versioning

ModusToolbox™ products include tools and firmware that can be used individually, or as a group, to develop
connected applications for our devices. We understand that you want to pick and choose the ModusToolbox™
products you use, merge them into your own flows, and develop applications in ways we cannot predict.
However, it is important to understand that every tool and library may have more than one version. The tools
package that provides the set of tools also has its own version. This section describes how ModusToolbox™
products are versioned.

14.1 General philosophy

ModusToolbox™ software is not a monolithic entity. Libraries and tools in the context of ModusToolbox™ are
effectively "mini-products" with their own release schedules, upstream dependencies, and downstream
dependent assets and applications. We deliver libraries via GitHub, and we deliver tools though the
ModusToolbox™ installation package.

All ModusToolbox™ products developed by us follow the standard versioning scheme:

e |Ifthere are known backward compatibility breaks, the major version is incremented.

e Minorversion changes may introduce new features and functionality, but are "drop-in" compatible.

002-29893 Rev. *N
2022-04-07

User Guide 130f 84

http://openocd.org/doc/doxygen/html/index.html
https://www.infineon.com/products/psoc-programming-solutions
https://github.com/Infineon/Firmware-loader
https://www.infineon.com/products/psoc-programming-solutions
https://www.infineon.com/documentation/development-kitsboards/kitprog-user-guide
http://openocd.org/doc/doxygen/html/index.html
https://os.mbed.com/handbook/DAPLink

o~ _.
ModusToolbox™ user guide |nf|neon

Introduction

e Patch version changes address minor defects. They are very low-risk (fix the essential defect without
unnecessary complexity).

Code Examples include various libraries automatically. Prior to the ModusToolbox™ 2.3 release, these libraries
were typically the latest versions. From the 2.3 release and newer, when you create a new application from a
code example, any of the included libraries specified with a "latest-style" tag are converted to the "release-
vX.Y.Z" style tag.

If you use the Library Manager to add a library to your project, the tool automatically finds and adds any
required dependent libraries. From the 2.3 release and newer using the MTB flow, these dependencies are
created using "release-vX.Y.Z" style tags. The tool also creates and updates a file named locking_commit.log in
the deps subdirectory inside your application directory. This file maintains a history of all latest to release
conversions made to ensure consistency with any libraries added in the future.

1.4.2 Tools package versioning

The ModusToolbox™ tools installation package is versioned as MAJOR.MINOR.PATCH. The file located at
<install_path>/ModusToolbox/tools_2.4/version-2.4.0.xml also indicates the build number.

Every MAJOR.MINOR version of a ModusToolbox™ product is installed by default into
<install_path>/ModusToolbox. So, if you have multiple versions of ModusToolbox™ software installed, they are
allinstalled in parallel in the same ModusToolbox directory, as follows:

v ModusToolbox
docs 2.3
docs_ 2.4
ide_2.3
ide_2.4
tools_2.3

tools_2.4

1.4.3 Multiple tools versions installed

When you run make commands from the command line, a message displays if you have multiple versions of the
"tools" directory installed and if you have not specified a version to use.

FI-BT.mk

dusTool
»olbox

User Guide 14 of 84 002-29893 Rev. *N
2022-04-07

o _.
ModusToolbox™ user guide |nf| neon

Introduction

1.4.4 Specifying alternate tools version

By default, the ModusToolbox™ software uses the most current version of the tools directory installed. That is, if
you have ModusToolbox™ versions 2.3 and 2.4 installed, and if you launch the Eclipse IDE from the
ModusToolbox™ 2.3 installation, the IDE will use the tools from the "tools_2.4" directory to launch
configurators and build an application. This section describes how to specify the path to the desired version.

1.4.4.1 Environment variable

The overall way to specify a path other than the default "tools" directory, is to use a system variable named
CY TOOLS_ PATHS. On Windows, open the Environment Variables dialog, and create a new System/User
Variable:

Edit System Variable x

Variable name: [cv_To0Ls patHs |

Variable value: | C:/Users/XVZ/ModusToolbox/tools_2.3/] |

Browse Directory... Browse File... Cancel
Note: Use a Windows style path, (that is, not like /cygdrive/c/). Also, use forward slashes. For example:

C:/Users/XYZ/ModusToolbox/tools_2.3/
Use the appropriate method for setting variables in macOS and Linux for your system.

1.4.4.2 Specific project Makefile

To preserve a specific "tools" path for the specific project, edit that project’s Makefile, as follows:

If you install the IDE in a custom location, add the path to its

"tools X.Y" folder (where X and Y are the version number of the tools
folder).

CY TOOLS PATHS+=C:/Users/XYZ/ModusToolbox/tools 2.3

1.4.5 Tools and configurators versioning

Every tool and configurator follow the standard versioning scheme and include a version.xml file that also
contains a build number.

1.4.5.1 Configurator messages

Configurators indicate if you are about to modify the configuration file (for example, design.modus) with a
newer version of the configurator, as well as if there is a risk that you will no longer be able to open it with the
previous version of the configurator:

An older file format was detected. The file can be safely viewed but saving the file
H in this tool will update its format making it no longer open in older tools.
I in thi | will update its king i longer open in old |

Last saved with: Tools Package 1.1
Current: Tools Package 2.2.0.2468 (Ci/Users/CKF/ModusToolbox/tools_2.2)

Ci/Users/CKF/mtw1.1/234/new-test/BlinkyLED_mainapp/design.modus

oK

User Guide 150f 84 002-29893 Rev. *N
2022-04-07

o _.
ModusToolbox™ user guide |nf| neon

Introduction

Configurators will also indicate if you are trying to open the existing configuration with a different, backward
and forward compatible version of the Configurator.

Motice List (23]
OD Errors | 0Warnings D 0Tasks o4lnfos
Fixt Description ~ Location
o The design file was last saved with a different version of the tools than will be used to perform code generation on save, Last saved with: desi "
Tools Package 2.0. Current: Tools Package 2.1.0.1205 (C:/Users/CKF/ModusToolbox/tools_2.1). ignmecus
Re WLO 15 enabled. tﬁwp sEaRup Will bt sTower because clock conF\guraElon Cannof continue until the WLO 15 ready. »eethe device X

i datasheet for WCO startup timing. If WCO is not required during startup, consider starting it in main() for faster chip startup. CY8C6247871-D54: WCO

(i] There are reserved routing resources. See the Analog Route Editor for more information. CYBC6247B71-D54: Routing Resources

i] There are reserved routing resources, See the Analog Route Editor for maere information. CYW4343WKUBG: Routing Resources
Note: If using the command line, the build system will notify you with the same message.

.

1.4.6 GitHub libraries versioning

GitHub libraries follow the same versioning scheme: MAJOR.MINOR.PATCH. The GitHub libraries, besides the
code itself, also provide two files in MD format: README and RELEASE. The latter includes the version and the
change history.

The versioning for GitHub libraries is implemented using GitHub tags. These tags are captured in the manifest
files (see the Manifest files chapter for more details). The Project Creator tool parses the manifests to determine
which BSPs and applications are available to select. The Library Manager tool parses the manifests and allow
you to see and select between various tags of these libraries. When selecting a particular library of a particular
version, the.mtb file gets created in your project. These .mtb files are a link to the specific tag. Refer to the
Library Manager user guide for more details about tags.

Once complete with initial development for your project, if using the git clone method to create the
application instead of the Project Creator tool, we recommend you switch to specific "release" tags. Otherwise,
running the make getlibs command will update the libraries referenced by the .mtb files, and will deliver the
latest code changes for the major version.

1.4.7 Dependencies between libraries

The following diagram shows the dependencies between libraries.

GitHub

‘ bsp.git ‘ ‘ capsense.git ‘

‘ core-lib.git ‘ ‘ retarget-io.git ‘

‘ core-make.git ‘ ‘ oo o ‘

Y y A A) Y A
release XYZ
all tags MTB Manifests
latest.release.XYZ2 ——— >
A A
Application Project
Creator
'All point to — bsp.mtb Update
GitHub i the tags
core-lib.mtb Library
core-make.mtb Manager

capsense.mtb

| retarget-io.mtb

There are dependencies between the libraries. There are two types of dependencies:

User Guide 16 of 84 002-29893 Rev. *N
2022-04-07

http://www.infineon.com/ModusToolboxLibraryManager

ModusToolbox™ user guide ‘ iﬁneon

Introduction

1.4.7.1 Git repo dependencies via .mtb files

Dependencies for various libraries are specified in the manifest file. Only the top-level application will have
.mtb files for the libraries it directly includes.

1.4.7.2 Regular C dependencies via #include

Our libraries only call the documented public interface of other Libraries. Every library declares its version in
the header. The consumer of the library including the header checks if the version is supported, and will notify
via #error if the newer version is required. Examples of the dependencies:

o The Device Support library (PDL) driver is used by the Middleware.

e The configuration generated by the Configurator depends on the versions of the device support library
(PDL) or on the Middleware headers.

Similarly, if the configuration generated by the configurator of the newer version than you have installed, the
notification via the build system will trigger asking you to install the newer version of the ModusToolbox™
software, which has a fragmented distribution model. You are allowed and empowered to update libraries
individually.

1.5 Partner ecosystems

To support Infineon microcontrollers in our partner ecosystems, some tools and middleware from
ModusToolbox™ software are also integrated into Mbed OS and Amazon FreeRTOS. Refer to mbed.com and
aws.amazon.com/freertos, respectively, to learn more about developing applications in those environments.

User Guide 170of 84 002-29893 Rev. *N
2022-04-07

http://www.mbed.com/
aws.amazon.com/freertos

ModusToolbox™ user guide ‘ iﬁﬂ eon

Getting started

2 Getting started

ModusToolbox™ software provides various graphical user interface (GUI) and command-line interface (CLI)
tools to create and configure applications the way you want. You can use the included Eclipse-based IDE, which
provides an integrated flow with all the ModusToolbox™ tools. Or, you can use other IDEs or no IDE at all. Plus,
you can switch between GUI and CLI tools in various ways to fit your design flow. Regardless of what tools you
use, the basic flow for working with ModusToolbox™ applications includes these tasks:

e Install and configure software
e Gethelp

e Create applications

e Update BSPs and libraries

e Configure settings for devices, peripherals, and libraries

e Write application code

e Build, program, and debug

This chapter helps you get started using various ModusToolbox™ tools. It covers these tasks, showing both the
GUl and CLI options available.

2.1 Install and configure software
The ModusToolbox™ tools package is located on our website:

https://softwaretools.infineon.com/tools/com.ifx.tb.tool.modustoolbox

You can install the software on Windows®, Linux, and macOS. Refer to the ModusToolbox™ installation guide for
specific instructions.

2.1.1 GUI set-up instructions

In general, the IDE and other GUI-based tools included as part of the ModusToolbox™ tools package work out of
the box without any changes required. Simply launch the executable for the applicable GUI tool. On Windows,
most tools are on the Start menu.

2.1.2 CLI set-up instructions
Before using the CLI tools, ensure that the environment is set up correctly.
e For Windows, the tools package provides a command-line utility called "modus-shell." You can run this
from the Start menu, or navigate to the following installation directory and run Cygwin.bat :
<install_path>/ModusToolbox/tools_2.4/modus-shell/

e For macOS, the installer will detect if you have the necessary tools. If not, it will prompt you to install them
using the appropriate Apple system tools.

e For Linux, there is only a ZIP file, and you are expected to understand how to set up various tools for your
chosen operating system.

To check your installation, open the appropriate command-line shell.

e Typewhich make.For most environments, it should return /usr/bin/make.

e Typewhich git.Formostenvironments, it should return /usr/bin/git.

User Guide 18 of 84 002-29893 Rev. *N
2022-04-07

https://softwaretools.infineon.com/tools/com.ifx.tb.tool.modustoolbox
http://www.infineon.com/ModusToolboxInstallGuide

ModusToolbox™ user guide ‘ iﬁﬂ eon

Getting started

If these commands return the appropriate paths, then you can begin using the CLI. Otherwise, install and
configure the GNU make and git packages as appropriate for your environment.

2.2 Get help

In addition to this user guide, we provide documentation for both GUI and CLI tools. GUI tool documentation is
generally available from the tool’s Help menu. CLI documentation is available using the tool’s -h option.

2.2.1 GUI Ddocumentation

2.2.1.1 Eclipse IDE

If you choose to use the integrated Eclipse IDE, see the Eclipse IDE for ModusToolbox™ quick start guide for
getting started information, and the Eclipse IDE for ModusToolbox™ user guide for additional details.

2.2.1.2 Configurator and tool guides

Each GUI-based configurator and tool includes a user guide that describes different elements of the tool, as
well as how to use them. See Installation resources for descriptions of these tools and links to the
documentation.

2.2.2 Command line documentation

2.2.2.1 make help

The ModusToolbox™ build system includes amake help target that provides help documentation. In order to
use the help, you must first run the make getlibs command inan application directory (see make getlibs for
details). From the appropriate shell in an application directory, type in the following to print the available make
targets and variables to the console:

make help

To view verbose documentation for any of these targets or variables, specify them using the cy HELP variable.
For example:

make help CY HELP=TOOLCHAIN

Note: This help documentation is part of the base library, and it may also contain additional information
specific to a BSP.

To see the various make targets and variables available, see the Available make targets and Available make
variables sections in the ModusToolbox™ build system chapter.

User Guide 190f 84 002-29893 Rev. *N
2022-04-07

http://www.infineon.com/ModusToolboxQSG
https://www.infineon.com/MTBEclipseIDEUserGuide

o~ _.
ModusToolbox™ user guide |nf|neon

Getting started

2.2.2.2 CLI tools

Various CLI tools include a -h option that prints help information to the screen about that tool. For example,
running this command prints output for the Project Creator CLI tool to the screen:

./project-creator-cli -h

B ~/MedusToolbox/tools_2.3/praject-creator - o X

fault_(optional).
optional).

2.3 Create applications

ModusToolbox™ software provides the Project Creator as both a GUI tool and a command line tool to easily
create one or more ModusToolbox™ applications. See Project Creator tools. If you prefer not to use the Project
Creator tools, you can use the git clone command directly. See git clone. However, be sure to also run the
make getlibscommand inthe application directory. See make getlibs. You can then use those application
filesin your preferred IDE or from the command line.

Note: Beginning with the ModusToolbox™ 2.2 release, we structure applications with the MTB flow. Using
this flow, applications can share BSPs and libraries. If needed, different applications can use
different versions of the same BSP/library. Sharing resources reduces the number of files on your
computer and speeds up subsequent application creation time. Shared BSPs, libraries, and
versions are located in the mtb_shared directory adjacent to your application directories. You can
easily switch a shared BSP or library to become local to a specific application, or back to being
shared. Refer to the Library Manager User Guide for details.

Looking ahead, most example applications will use the MTB flow. However, there are still various applications
that use the previous flow, now called the LIB flow, and these applications generally do not share BSPs and
libraries. ModusToolbox™ software fully supports both flows, but it only supports one flow or the other for a
given application.

For simplicity, this guide focuses on the MTB flow. For details about how the LIB flow works, refer to the
ModusToolbox™ 2.1 revision of this guide, located here:

https://www.cypress.com/file/504361/download

User Guide 20 of 84 002-29893 Rev. *N
2022-04-07

https://www.infineon.com/ModusToolboxLibraryManager
https://www.cypress.com/file/504361/download

o _.
ModusToolbox™ user guide |nf| neon

Getting started

2.3.1 Project Creator tools

The Project Creator tools runthe git clone command for the selected code example(s) and create a directory
at the specified location with the specified name. The tools also updates the application Makefile and create a
<BSP-NAME=>.mtb file based on the specified BSP. That .mtb file contains the following:

e The URL of the git repo where the BSP contents can be found.
o The commit (version of the library) to checkout / make visible / use in the application.

e Avariable of where to put the BSP on disk (shared or local to the application).

The Project Creator tools then run the make getlibs command to read the BSP manifest file, resolve
dependencies, and import libraries. Depending on the settings in the application and manifest, the tools put
everything into application directories and an mtb_shared directory. In most cases, BSPs are placed local to the
application, while libraries are shared.

2.3.1.1 Project Creator GUI

The Project Creator GUI tool provides a series of screens to select a BSP and code example, specify the
application name and location, as well as select target IDE. The tool displays various messages during the
application creation process. Refer to the Project Creator user guide for more details. Open the Project Creator
GUI tool from the Windows Start menu or by running the executable file installed in the following directory by
default:

<install_path>/ModusToolbox/tools_2.4/project-creator/

Settings Help
Enter filter text L* Import | CYSCKIT-062-WIFI-BT
Kit Name - MCU Connectivity Device “ | The P5oC 6 WiFi-BT Pioneer Kitis a low-cost hardware platform that enables design and
» BMGT BSPs debug af the PSoC 52 MCU (CYBCE247821.D54) and the Murata LEEESKL 1D Madule
b+ PSoC4BSPs {CYW4343W WiFi + Bluetooth Combo Chip).
~ PSoC6BSPs Kit Features:

CVBCKIT-062-BLE CY8C6347BZI-BLDS3 <none»

CVBCKIT-08252-43012 CYSCE24ABZI-S2D44 CYWA3012COWKWEG SBLE V5.0

CYaCKIT-06254 CY2C6244LQ)-54D92 <none> »Serial memary interface

CVBCKIT-052-WIFI-BT _ CYBCG247BZ1-D54 _ CVWA3AIWKUBG ~FOM-PCM digital microphane interface

CVBCKIT-064B052-4343W CYBOGAZABZI-52D44 CYWAMIWKUBG +Indusiryeading CapSense

*Full-speed USE

CVBCKIT-0545052-4343W CYBDBAZABZI-52044 CYWAMIWKUEG ©IEEE B0 1 1a/bja/n WLAN

CVBCPROTO-062-4343W CYBC624ABZ1-52D44 CYWA3M3WKUBG

CVBCPROTD-06253-4343W CYBCE245L0)-53D72 CYWA3IWKUBG Kit Contents:

QRRORIGH: [CRCGE) e .

- -| 7 | <none> -] " L .

ol sl “TFT ey shekdwih o 2+ T iy, bt seior, -4 ot s, and

CVBCPROTO-DG451-58 CYBOGM7BZI-DS4 <none> +USB zable

CVBLE-216045-EVAL CYBLE-416045-02 <none»

CVSBSVSKIT-01 CYCE24AFNI-52D43 <none>

CVSBSYSKIT-DEV-01 CYBCE24AFNI-52D43 CYWA3012TCOKFFBH

CVWOPE2S1-43012EVB-01 CYSCE24TFDI-DS2 CYWA3012TCOEKUBG

CVWOPE2S1-43438EVB-01 CYBC6247TBZI-D5A CYWA3433KUBG

PSOCE-GENERIC CYCE347BZI-BLD33 <none» =

4 »

Summary: -
BSP: CYSCKIT-062-WIFI-ET
Press "Next” to select application. S

Mext > Close

@

The option to select a target IDE generates necessary files for that IDE. If you launch the Project Creator GUI tool
from the included Eclipse-based IDE, it seamlessly exports the created application for use in the Eclipse IDE.

2.3.1.2 project-creator-cli

You can also use the project-creator-cli tool to create applications from a command-line prompt or from within
batch files or shell scripts. The tool is located in the same directory as the GUI version
(<install_path>/ModusToolbox/tools_2.4/project-creator/). To see all the options available, run the tool with the
-h option:

./project-creator-cli -h

User Guide 21 0f 84 002-29893 Rev. *N
2022-04-07

http://www.infineon.com/ModusToolboxProjectCreator

o~ _.
ModusToolbox™ user guide |nf|ne0n

Getting started

The following example shows running the tool with various options.

./project-creator-cli \
--board-id CY8CKIT-062-WIFI-BT \
--app-id mtb-example-psoc6-hello-world \
--user-app-name MyLED \
--target-dir "C:/my projects”

In this example, the project-creator-cli tool runs the git clone command to clone the Hello World code
example from our GitHub server (https://github.com/Infineon). It also updates the TARGET variable in the
Makefile to match the selected BSP (--board-id), creates a.mtb file forit, and runs the make getlibs
command to obtain the necessary library files. This example also includes options to specify the name (--
user-app-name) and location (--target-dir) where the application will be stored.

2.3.2 git clone

The Project Creator GUl and command line tools run the git clone command as part of the process of
creating an application. You canrunthe git clone command directly from the command line. Open the
appropriate shell and type in the following command (replace the <URL> with the appropriate URL of the repo
you wish to clone):

git clone <URL>

The clone operation creates an application directory in your current location. Navigate to that directory (cd
<DIR>), and find the application Makefile. This is the top-level file that determines the application build flow.
To see the various make targets and variables that you can edit in this file, refer to the Available make targets
and Available make variables sections in the ModusToolbox™ build system chapter.

Note: When using the git clone command directly, be sure to also run the make getlibscommand
in the application directory. See make getlibs. Also, each code example has a default BSP included
in the application's deps subdirectory. If you want to use a different BSP, you must create a .mtb
file for it in the deps subdirectory before running make getlibs, and you must change the
TARGET variable in the Makefile.

Note: The git clone command does not automatically lock the libraries to the latest versions.
Therefore, when you use make getlibsin future updates, your libraries may be updated to
newer versions. You can use Library Manager to manually lock the library versions.

User Guide 22 of 84 002-29893 Rev. *N
2022-04-07

https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software

ModusToolbox™ user guide ‘ iﬁﬂ eon

Getting started

2.3.3 Typical application contents

After an application has been created for the MTB flow and all the libraries have been imported, it contains the
following basic files and directories as shown in the following image:

v 25 > Application-1
& > deps
w = libs
(=% TARGET_CY8CKIT-06252-43012
Izl capsensemth
gl core-lib.mtb
core-make.mth
@ mtb.mk
k&2 mtb-hal-catl.mth
mith-pdl-catl.mtb
Il psocbomOp.mth
lg2 recipe-make-catla.mth
¢} main.c
= LICENSE
& = Makefile
= makefile.init
|v4 README.md
h’—ﬁ- = Application-2
w 2% mth_shared
ﬁ: Archives
[capsense
= core-lib
= core-make
= mtb-hal-catl
= mtb-pdl-catl
= psocbomOp
= recipe-make-catla

&= retarget-ic

2.3.3.1 Application directory

This directory contains the application source code, Makefile, readme file, as well as the deps and libs
subdirectories. If you create multiple applications, there will be multiple application directories contained in
the same directory structure or workspace.

e Source code - This is one or more files for your application’s code. Often it is named main.c, but it could be
more than one file and the files could have almost any name. Source code files can also be grouped into a
subdirectory anywhere in the application's directory (for example, sources/main.c).

¢ Makefile - This is the application’s Makefile, which contains configuration information. See the
ModusToolbox™ build system chapter for more details.

o deps subdirectory - By default, this subdirectory contains .mtb files using the MTB flow.
e |Initially, this subdirectory contains only the <BSP>.mtb file for the BSP you selected for the application.

e It could also contain <library=.mtb files for libraries that were included directly or for which you
changed using the Library Manager. See the Update BSPs and libraries section for details.

e This subdirectory also contains the locking_commit.log file, which keeps track of the version for each
dependent library.

¢ libs subdirectory - This subdirectory may contain different types of files generated by the make getlibs
process, based on how the application is created. You can regenerate these files using the make getlibs
command, so you do not need to add these files to source control.

e This subdirectory contains BSPs that are local to the application (that is, not shared).

o Ifyou update your application to specify any libraries to be local as well, then this directory will also
contain source code for those libraries.

e By default, this subdirectory contains the <library>.mtb files for libraries included as indirect
dependencies of the BSP or other libraries.

e This directory also contains the mtb.mk file that lists the shared libraries and their versions.

User Guide 23 of 84 002-29893 Rev. *N
2022-04-07

o _.
ModusToolbox™ user guide |nf| neon

Getting started

2.3.3.2 mtb_shared directory

Typically, a new application also includes a mtb_shared directory adjacent to the application directory, and this
is where the shared BSP and libraries are cloned by default. This location can be modified by specifying the

CY GETLIBS PATHvariable. Duplicate libraries are checked to see if they point to the same commit and if so,
only one copy is kept in the mtb_shared directory. You can regenerate these files using the make getlibs
command, so you do not need to add these files to source control.

2.4 Update BSPs and libraries

As part of the application creation process, the Project Creator tools update the application with BSP and
library information. If you use the git clone command, you will have to update BSP and library information
as a separate process using the Library Manager tool or from the command line using the make getlibs
command. You can also update the BSP and library information at any point in the development cycle using
these tools.

24.1 Library Manager

As needed, use the Library Manager tool to add or remove BSPs and libraries for your application, as well as
change versions for BSPs and libraries. You can also change the active BSP. Open the Library Manager tool from
the application directory using the make modlibs command.

The Library Manager opens for the selected application and its available BSPs and libraries.

Settings Help
Directory: |C:/Users/CKF/mtw2.3/3544/hw Hello_World Browse...

Project: C:/Users/CKF fmtw2. 3/3544/hw/Hello_World A
Active BSP: | CYBCKIT-062-WIFI-BT o

CYBCKIT-062-WIFI-BT

Enter filter text S ==
The PSoC 6 WiFi-BT Pioneer Kit is a low-cost hardware platform that enables design and
BSPs Libraries debug of the PSoC 62 MCU (CYSC6247BZI-D54) and the Murata LBEESKL 1DX Module
= 1| | (CrW4343w WiFi + Bluetooth Combo Chip).

Name “ Shared Version
* PSoC 6BSPs Kit Features:

CVBCKIT-062-BLE Latest 1.X release

[l CYBCKIT-062-WIFI-BT (Active) [f] Latest 2% release ey i‘gmw nterFace

CYBCKIT-06252-42012 Latest 1.X release POMCM digital microphone interface

CVYBCKIT-06254 Latest 2.X release + Industry-eading CapSense

CYBCKIT-064B0S2-4343W Latest 1.X release *Full-speed USB

CYBCKIT-0845062-4343W Latest 1.X release = [EEE 802, 11a/b/g/n WLAN

CYBCPROTO-062-4343W Latest 1.X release

CYBCPROTO-D6253-4343W Latest 1.X release it Contents:

CYECPROTO-063-BLE Latest 1.X release « CYSOKIT-062-WIFI-BT evaluation board

CYE2CPROTO-064B051-BLE Latest 1.X release b’ * TFT display shield with a 2.4” TFT display, light sensor, 6-axis motion sensor, |~

Reading project (C:/Users/CKF /mtw2. 3/3544/hw/Hello_world) information...

Successfully acquired project information.

Update Close

Note: There are several ways to open the Library Manager; refer to the Library Manager user guide for
more details.

User Guide 24 of 84 002-29893 Rev. *N
2022-04-07

http://www.infineon.com/ModusToolboxLibraryManager

o _.
ModusToolbox™ user guide |nf| neon

Getting started

The Library Manager tool provides a field to select the Active BSP. It also includes two tabs to view and update
BSPs and Libraries.

Settings Help
Directory: | C:/Users ffollettcjimtw2. 3/4109/hw-3-11-21/Hello_World

Project: C:fUsers/follettcjimtw2. 3/4109 fhw-3-11-21/Hello_World

IActi\c'e BSP: | CYBCKIT-062-WIFI-BT

Enter filter text \f =]
Libraries BSPs | Libraries |
MName “ Shared Version MName “ Shared Version =
b AIROC Bluetooth BSPs display-oled-ssd1306 1.0.1 release
» PMG1BSPs display-tft-st778%v 1.0.1 release
¥ PSoC 4 BSPs V| retarget-io v 1.1.1 release
* P5oC 6 BSPs rgb-led 1.2.0 release
CY3CEVAL-06252 Latest 2. release sensor-atmo-bme620 1.0.0 release
CYSCEVAL-06252-LAI-4373M2 sensor-light 1.0.1 release
CY3CKIT-062-BLE 2.0.0 release sensor-motion-bmil60 1.0.1 release
CYBCKIT-062-WIFI-BT (Active) 21,0 release serial-flash 1.1.0 release
W | CYBCKIT-06252-43012 - Z thermistor 2.0.0 release
CYBCKIT-06254 2.1.0 release 1 udb-sdio-whd v 1.1.1 release
CYBCKIT-064B0S2-4343W 2.1.0 release whd-bsp-integration 1.1.2 release
CYBCKIT-0645052-4343W 2.1.0 release v BT Middleware libraries
V| CYBCPROTO-062-4343W v 2.1.0 release * MCU Middleware
CYBCPROTO-06253-4343W 2.1.0 release (&) capsense v AL 2100 release
CY8CPROTO-063-BLE 2.1.0 release clib-support 1.0.2 release
CY8CPROTO-064B0S1-BLE 2.1.0 release dfu Latest 1.X release
CY8CPROTO-064B0S1-55A 2.1.0 release freertos ’
CY8CPROTO-064B053 2.1.0 release littlefs 1.5.0 release
CYBCPROTO-06451-5B 2.1.0 release ~ PSoC 6 Base Libraries 1.5.1 release
CYBLE-416045-EVAL 2.1.0 release 5 mtb-hal-cat1 v
CYSBSYSKIT-01 2.1.0 release 1.5.2 release
CVSBSYSKIT-DEV-01 21,0 release @ mtb-pdi-catl v
CYWOPG251-43012EVE-01 210 release 17 _psocernlp v EEliEkacs
CYWIPE251-43438EVE-01 2.1.0 release i recipe-make-catla 1.7.1 release
PSOCE-GENERIC 2.1.0 release b P5oC 6 Middleware
b XMCBSPs b WiFi Middleware libraries -

Make changes to BSPs and libraries as follows:
e Select one or more check boxes under Name for the items to add. Deselect check boxes for items to
remove.

o Specify whether items are shared (placed in the mtb_shared directory) or local to the application (placed in
the libs subdirectory) by selecting/deselecting the Shared check box.

e Choose an appropriate Version for each item.

Click Update to proceed with the changes. The status box displays various messages while applying changes,
and then indicates if the application was updated or not.

Successfully updated the project.

Reading project (C: /Users/follettcjimtw2. 3/4109/hw-3-11-21/Hello_World) information. ..

Successfully acquired project information. =

User Guide 25 of 84 002-29893 Rev. *N
2022-04-07

ModusToolbox™ user guide ‘ iﬁneon

Getting started

2.4.2 make getlibs

In the MTB flow, the Project Creator tools and the Library Manager tool run the make getlibs command to
search for all.mtb files in the application directory. Each .mtb file contains information used when the
application is created. These files are parsed, and the libraries are cloned into a directory named mtb_shared.

If youranthe git clone command manually and did not use the Library Manager, then your application will
contain only default.mtb files. You must run the make getlibs command to parse those files and clone the
libraries. However, if you want to use to a different BSP than the default provided by the code example, you
must first edit the Makefile to update the TARGET variable to match the desired BSP. Then, you must add a.mtb
file in the /deps subdirectory that includes a URL to the desired BSP location.

Note: ModusToolbox™ applications that use the LIB flow contain.lib files in the deps subdirectory. If an
application uses the MTB flow, then all .lib files are ignored.

When you are ready to update your application, open the appropriate shell (see CLI set-up instructions) and run
the following command in the application directory:

make getlibs

Note: The make getlibs operation may take a long time to execute as it depends on your internet
speed and the size of the libraries that it is cloning. To improve subsequent library cloning
operations, a cache directory named ".modustoolbox/cache" exists in the SHOME (Linux, macOS)
and SUSERPROFILE (Windows) directories.

2.5 Configure settings for devices, peripherals, and libraries

Depending on your application, you may want to update and generate some of the configuration code. While it
is possible to write configuration code from scratch, the effort to do so is considerable. ModusToolbox™
software provides applications called configurators that make it easier to configure a hardware block or a
middleware library. For example, instead of having to search through all the documentation to configure a
serial communication block as a UART with a desired configuration, open the appropriate configurator to set
the baud rate, parity, stop bits, etc.

Before configuring your device, you must decide how your application will interact with the hardware; see
Application layers. That decision affects how you configure settings for devices, peripherals, and libraries.

Note: Before you make changes to settings in configurators, you should first copy the configuration
information to the application and override the BSP configuration or create a custom BSP. See
details about BSPs in the Board support packages chapter. If you make changes to a standard
BSP library, it will cause the repo to become dirty. Additionally, if the BSP is in the shared asset
repository, changes will impact all applications that use the shared BSP. If this happens, refer to
KBA231252.

The configurators can be run as GUIs to easily update various parameters and settings. Most can also be run as
command line tools to regenerate code as part of a script. For more information about configurators, see the
Configurators section. Also, each configurator provides a separate document, available from the configurator's
Help menu, that provides information about how to use the specific configurator.

User Guide 26 of 84 002-29893 Rev. *N
2022-04-07

https://community.cypress.com/docs/DOC-21498

o _.
ModusToolbox™ user guide |nf| neon

Getting started

2.5.1 Configurator GUI tools

You can open various configurator GUIs using the appropriate make command from the application directory.
For example, to open the Device Configurator, run:

make config

This opens the Device Configurator with the current application’s design.modus configuration file.

ﬁ CifUsers/follettcj/mtw2.4/5435/hw/Hello_World/libs/TARGET_CYBCKIT-062-WIFI-BT/COMPONENT_BSP_DESIGN_MODUS/design.modus - Device Configurator 3.10 - m] X
File Edit View Help
CYBCE247BZI-D34 CYW4343WKUBG CSD (CapSense, etc.) 0 (CYBSP_CSD) - Parameters g X
Peripherals Pins Analog-Routing System Peripheral-Clocks ~ DMA Enter filter text... 18 B F
Enter filter text... HIFE R @ F Name Value &
Resource Name(s) Personality v Panp.l'.\era\ Documentation

Anslog (%) Configuration Help Open CSD Documentation

Communicaticn ~ Inputs

Digital (2) Clock & | @ 8bit Divider 3 clk (CYBSP_CSD_CLK_DIV, CYBSP_CS_CLK_DIV) [USED]
¥ System v CapSense

CSD (CapSense, etc) 0 CYBSP_CSD CsD-2.0
[] LCD Direct Drive 0 led,

[] Multi-Counter Watchdog Timer (MCWDT) O
[] Multi-Counter Watchdog Timer (MCWDT) 1
[] Real Time Clock (RTC)

7 Enable CapSense
(%) Target CPU core Cortex M4
~ External Tools

drive 0

(2) CapSense Configurator | Launch CapSense Configurator

(%) CapSense Tuner Launch CapSense Tuner
~ CSDADC
(%) Enable CSDADC |
v CSDIDAC
(%) Enable CSDIDAC |
¥ CapSense Capacitors
(Z) Cmed & | @ P7[7] analog (CYESP_CMOD) [SHARED] v
< >

CSD (CapSense, ete.) 0 (CYBSP_CSD) - Parameters Code Preview

Motice List

Qokrors | 0Wamnings | [Z] 0Tasks ©simes

Fix Description

Location

Ready

As described under Tools make targets, you can use the make open command with appropriate arguments to
open any configurator. For example, to open the CAPSENSE™ Configurator, run:

make open CY OPEN TYPE=capsense-configurator

You can also use the Eclipse IDE provided with ModusToolbox™ software to open configurators. For example, if
you select the "Device Configurator" link in the IDE Quick Panel, the tool opens with the application’s
design.modus file. Refer to the Eclipse IDE for ModusToolbox™ user guide for more details about the Eclipse IDE.

One other way to open BSP configurators (such as CAPSENSE™ and SegLCD Configurators) is by using a link
from inside the Device Configurator. However, this does not apply to Library configurators (such as Bluetooth®
and USB Configurators).

2.5.2 Configurator CLI tools

Most of the configurators can also be run from the command line. The primary use case is to re-generate source
code based on the latest configuration settings. This would often be part of an overall build script for the entire
application. The command-line configurator cannot change configuration settings. For information about
command line options, run the configurator using the -h option.

User Guide 27 of 84 002-29893 Rev. *N
2022-04-07

https://www.infineon.com/MTBEclipseIDEUserGuide

ModusToolbox™ user guide < iﬁn eon

Getting started

2.6 Write application code

As in any embedded development application using any set of tools, you are responsible for the design and
implementation of the firmware. This includes not just low-level configuration and power mode transitions, but
all the unique functionality of your product. When writing application code, you must decide how the
application will interact with the hardware; see Application layers.

ModusToolbox™ software is designed to enable your workflow. It includes an integrated Eclipse IDE, as well as
support for Visual Studio (VS) Code, IAR Embedded Workbench, and Keil pVision (see Exporting to supported
IDEs). You can also use a text editor and command line tools. Taken together, the multiple resources available
to you in ModusToolbox™ software: BSPs, configurators, driver libraries, and middleware, help you focus on
your specific application.

2.6.1 Application layers

There are four distinct ways for an application to interact with the hardware as shown in the following diagram:

PDL PDL PDL

HAL Structures Configurator Structures Manual Structures Register Read/Write

Hardware

e HAL structures: Application code uses the HAL, which interacts with the PDL through structures created by
the HAL

e Configurator structures: Application code uses PDL through structures created by a Configurator.
e Manual structures: Application code uses PDL through structures created manually.

e Register read/write: Application code uses direct register read and writes.

Note: Asingle application may use different methods for different peripherals.

2.6.1.1 HAL

Using the HAL is more portable than the other methods. It is the preferred method for simpler functions and
those that don't have extremely strict flash size limitations. It is a high-level interface to the hardware that
allows many common functions to be done quickly and easily. This allows the same code to be used even if
there are changes to pin assignments, different devices in the same family, or even to a different family that
may have radically different underlying architectures. For more details, refer to HAL on GitHub.

The advantages include:

e Easy hardware changes. Just change the pin assignment in the BSP and the code remains the same. For
example, if LED1 changes from PO_0 to PO_1, the code remains the same as long as the code uses the name
LED1 with the HAL. The only change is to the BSP pin assignment.

User Guide 28 of 84 002-29893 Rev. *N
2022-04-07

https://infineon.github.io/psoc6hal/html/index.html

o~ _.
ModusToolbox™ user guide |nf|neon

Getting started

e Easy migration to a different device as product requirements change.

o Ability to use the same code base across multiple projects and generations, even if underlying architectures
are different.

The disadvantages include:

e The HAL may not support every feature that the hardware has. It supports the most common features but
not all of them to maintain simplicity.

o The HAL will use additional flash space. The additional flash depends on which HAL APIs are used.

2.6.1.2 PDL

The PDL is a lower-level interface to the hardware (but still simpler than direct register access) that supports all
hardware features. Usually the PDL goes hand-in-hand with Configurators, which will be described next. Since
the PDL interacts with the hardware at a lower level it is less portable between devices, especially those with
different architectures. For more details, refer to PDL on GitHub.

The advantages/disadvantages are the exact opposite of those for the HAL. The main advantage is that it
provides access to every hardware feature.

2.6.1.3 Configurators

Configurators make initial setup easier for hardware accessed using the PDL. The Configurators create
structures that the PDL requires without you needing to know the exact composition of each structure, and
they create the proper structure based on your selections. See Configurators for more information.

If you use the HAL for a peripheral, it will create the necessary structures for you, so you should NOT use a
Configurator to set them up. The HAL structure is accessible, and once you initialize a peripheral with the HAL
you can view and even modify that structure (that is, a HAL object). The underlying structures are hardware-
specific, so you may be sacrificing portability if you modify the structure manually. There are a few exceptions.
For example, it is reasonable to configure system items (such as clocks) and use them with the HAL.

2.7 Build, program, and debug

After the application has been created, you can export it to an IDE of your choice for building, programming,
and debugging. You can also use command line tools. The ModusToolbox™ build system infrastructure
provides several make variables to control the build. So, whether you are using an IDE or command line tools,
you edit the Makefile variables as appropriate. See the ModusToolbox™ build system chapter for detailed
documentation on the build system infrastructure.

Variable Description

TARGET Specifies the target board/kit. For example, CYSCPROTO-062-4343W
APPNAME Specifies the name of the application

TOOLCHAIN Specifies the build tools used to build the application

CONFIG Specifies the configuration option for the build [Debug Release]
VERBOSE Specifies whether the build is silent or verbose [true false]

ModusToolbox™ software is tested with various versions of the TooL.cHAIN values listed in the following table.
Refer to the release information for each product for specific versions of the toolchains.

TOOLCHAIN Tools Host OS
GCC_ARM GNU Arm Embedded Compiler Mac OS, Windows, Linux
User Guide 29 of 84 002-29893 Rev. *N

2022-04-07

https://infineon.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html

ModusToolbox™ user guide ‘ iﬁn eon

Getting started

ARM Arm compiler Windows, Linux
IAR Embedded Workbench Windows

In the Makefile, set the TOOLCHAIN variable to the build tools of your choice. For example:
TOOLCHAIN=GCC ARM. There are also variables you can use to pass compiler and linker flags to the toolchain.

ModusToolbox™ software installs the GNU Arm toolchain and uses it by default. If you wish to use another
toolchain, you must provide it and specify the path to the tools. For example,

CY COMPILER PATH=<yourpath>.Ifthis pathis blank, the build infrastructure looks in the ModusToolbox/
install directory.

2.7.1 Use Eclipse IDE

When using the provided Eclipse IDE, click the Build Application link in the Quick Panel for the selected
application.

QQuick Panel = B8

Eclipse IDE for
ModusToolbox™

» Start

* Hello World (CYSCKIT-062-WIFI-BT}

I @&, Build Hello_World Application I

«f Clean Hello_World Application

» Launches

Because the IDE relies on the build infrastructure, it does not use the standard Eclipse GUI to modify build
settings. It uses the build options specified in the Makefile. This design ensures that the behavior of the
application, its options, and the make process are consistent regardless of the development environment and
workflow.

If you do change settings in the Makefile (for example, TARGET or CONFIG), you must re-create the launch
configs using the link in the Quick Panel; refer to the Eclipse IDE for ModusToolbox™ user guide for more
details.

2.7.2 Export to another IDE

If you prefer to use an IDE other than Eclipse, you can select the appropriate IDE from the Target IDE pull-down
menu when creating an application using the Project Creator tool. You can also use the appropriate make
<ide>command. For example, to export to Visual Studio Code, run:

make vscode

For more details about using other IDEs, see the Exporting to supported IDEs chapter. When working with a
different IDE, you must manage the build using the features and capabilities of that IDE.

2.7.3 Use command line

2.7.3.1 make build

When all the libraries are available (after executingmake getlibs),the application is ready to build. From the
appropriate shell, type the following:

make build

User Guide 30 of 84 002-29893 Rev. *N
2022-04-07

https://www.infineon.com/MTBEclipseIDEUserGuide

ModusToolbox™ user guide ‘ iﬁﬂ eon

Getting started

This instructs the build system to find and gather the source files in the application and initiate the build
process. In order to improve the build speed, you may parallelize it by giving it a -5 flag (optionally specifying
the number of processes to run). For example:

make build -316

2,7.3.2 make program
Connect the target board to the machine and type the following in the shell:
make program

This performs an application build and then programs the application artifact (usually an .elf or .hex file) to the
board using the recipe-specific programming routine (usually OpenOCD). You may also skip the build step by
using gprogram instead of program. This will program the existing build artifact.

2.7.3.3 make debug/qdebug/attach
The following commands can be used to debug the application, as follows:

e make debug - Build and program the board. Then launch the GDB server.
e make gdebug - Skip the build and program steps. Just launch the GDB server.

e make attach - Startsa GDB client and attaches the debugger to the running target.

User Guide 310f84 002-29893 Rev. *N
2022-04-07

ModusToolbox™ user guide ‘ iﬁneon

ModusToolbox™ build system

3 ModusToolbox™ build system

This chapter covers various aspects of the ModusToolbox™ build system. Refer to CLI set-up instructions for
getting started information about using the command line tools. This chapter is organized as follows:

e Overview
e Application types
e BSPs

o make getlibs
e Adding source files

e Pre-builds and post-builds

e Program and debug

e Available make targets

e Available make variables

3.1 Overview

The ModusToolbox™ build system is based on GNU make. It performs application builds and provides the logic
required to launch tools and run utilities. It consists of a light and accessible set of Makefiles deployed as part of
every application. This structure allows each application to own the build process, and it allows environment-
specific or application-specific changes to be made with relative ease. The system runs on any environment
that has the make and git utilities. For a "how to" document about the ModusToolbox™ Makefile system, refer
to https://community.cypress.com/docs/DOC-18994. Also, as described in the Getting started chapter, you can
run themake help command to get details on the various targets and variables available.

The ModusToolbox™ command line interface (CLI) and supported IDEs all use the same build system. Hence,
switching between them is fully supported. Program/Debug and other tools can be used in either the command
line or an IDE environment. In all cases, the build system relies on the presence of ModusToolbox™ tools
included with the ModusToolbox™ installer.

The tools contain a start.mk file that serves as a reference point for setting up the environment before
executing the recipe-specific build in the base library. The file also provides a get1ibs make target that brings
libraries into an application. Every application must then specify a target board on which the application will
run. These are provided by the <BSP>.mk files deployed as a part of a BSP library.

The majority of the Makefiles are deployed as git repositories (called "repos"), in the same way that libraries are
deployed in the ModusToolbox™ software. There are two separate repos: core-make used by all recipes and a
recipe-make-xxx that contains BSP/target specific details. These are the minimum required to enable an
application build. Together, these Makefiles form the build system.

3.2 Application types
The build system supports the following application types:

e Normal application - The application consists of one application Makefile. The build process creates one
artifact. All prebuilt libraries are brought in at link time. A normal application is constructed by defining the
APPNAME variable in the application Makefile.

e Library application - The application consists of one application Makefile. The sources are builtinto a
library. These libraries may be linked in as part of a Normal application build. A library application is
constructed by defining the LIBNAME variable in the application Makefile.

User Guide 32 0f 84 002-29893 Rev. *N
2022-04-07

https://community.cypress.com/docs/DOC-18994

ModusToolbox™ user guide ‘ iﬁneon

ModusToolbox™ build system

The library applications are usually placed as companions to normal applications. These normal applications
specify their dependency on library applications by including them in the DEPENDENT LIB PATHS make
variable. They also drive the build process of the library applications by defininga shared 1ibs make target.
For example:

DEPENDENT LIB PATHS=../bspLib
shared libs:
make -C ../bsplib build -j

3.3 BSPs

An application must specify a target BSP through the TARGET variable in the Makefile. We provide reference
BSPs for its development kits. Use these as a reference to construct your own BSP. For more information about
BSPs, refer to the Board support packages chapter.

e When using the Project Creator to create an application, it provides the selected BSP and updates the
Makefile.

e Usethe Library Manager to add, update, or remove a BSP from an application. You can also add a.mtb file
that contains the URL and a version tag of interest in the application.

3.4 make getlibs

When you run the make getlibs command, the build system finds all the .mtb files in the application
directory and performs git clone operations on them. A.mtb file contains a git URL to a library repo, a
specific tag for a version of the code, and a variable to specify the location to store the library.

The get1ibs target finds and processes all.mtb files and uses the git command to clone or pull the code as
appropriate. The target also calls the library-manager-cli tool to generate .mtb files for indirect dependencies.
Then, it checks out the specific tag listed in the .mtb file. The Project Creator and Library Manager invoke this
process automatically.

e Thegetlibs target must be invoked separately from any other make target (for example, the command
make getlibs buildisnotallowed and the Makefiles will generate an error; however, a command such
asmake clean buildisallowed).

e Thegetlibs targetperformsagit fetch on existing libraries but will always checkout the tag pointed to
by the overseeing.mtb file.

e Thegetlibs target detects if users have modified standard code and will not overwrite their work. This
allows you to perform some action (for example commit code or revert changes, as appropriate) instead of
overwriting the changes.

The build system also has a print1ibs target that can be used to print the status of the cloned libraries.

3.4.1 repos

The cloned libraries are located in their individual git repos in the directory pointed to by the
CY GETLIBS PATH variable (for example, /deps). These all point to the "our" remote origin. You can point your
repo by editing the .git/config file or by running the git remote command.

If the repos are modified, add the changes to your source control (git branch is recommended). When make
getlibs isrun (to either add new libraries or update libraries), it requires the repos to be clean. You may also
use the.gitignore file for adding untracked files when running make getlibs. See also KBA231252.

User Guide 33 0f 84 002-29893 Rev. *N
2022-04-07

https://community.cypress.com/docs/DOC-21498

ModusToolbox™ user guide ‘ iﬁneon

ModusToolbox™ build system

3.5 Adding source files

Source and header files placed in the application directory hierarchy are automatically added by the auto-
discovery mechanism. Similarly, library archives and object files are automatically added to the application.
Any object file not referenced by the application is discarded by the linker. The Project Creator and Library
Manager tools run the make getlibs command and generate a mtb.mk file in the application's libs
subdirectory. This file specifies the location of shared libraries included in the build.

The application Makefile can also include specific source files (SOURCES), header file locations (INCLUDES) and
prebuilt libraries (LDLIBS). This is useful when the files are located outside of the application directory
hierarchy or when specific sources need to be included from the filtered directories.

3.5.1 Auto-discovery

The build system implements auto-discovery of library files, source files, header files, object files, and pre-built
libraries. If these files follow the specified rules, they are guaranteed to be brought into the application build
automatically. Auto-discovery searches for all supported file types in the application directory hierarchy and
performs filtering based on a directory naming convention and specified directories, as well as files to ignore. If
files external to the application directory hierarchy need to be added, they can be specified using the SOURCES,
INCLUDES, and LIBS make variables.

Auto-discovery of source code (source and headers) has no depth limit (it uses the "find" tool). Auto-discovery
of other types of files do have a depth limit, including:

.mtb file depth
.mk file of the selected TARGET

o device support library discovery

e configurator file discovery

The default depth limit for these files is five directories deep. They can be changed to up to nine directories
deep by setting the following options in the Makefile:

CY UTILS SEARCH DEPTH=9
CY LIBS SEARCH DEPTH=9

To control which files are included/excluded, the build system implements a filtering mechanism based on
directory names and .cyignore files.

3.5.1.1 .cyignore

Prior to applying auto-discovery and filtering, the build system will first search for .cyignore files and construct
a set of directories and files to exclude. It contains a set of directories and files to exclude, relative to the
location of the .cyignore file. The .cyignore file can contain make variables. For example, you can use the
SEARCH_variable to exclude code from other libraries as shown for the "Test" directory in a library called
<library-name>:

$ (SEARCH <library-name>/Test
The cY IGNORE variable can also be used in the Makefile to define directories and files to exclude.

Note: The cy 1GNORE variable should contain paths that are relative to the application root.
Forexample, ./srcl.

User Guide 34 of 84 002-29893 Rev. *N
2022-04-07

ModusToolbox™ user guide ‘ iﬁneon

ModusToolbox™ build system

3.5.1.2 TOOLCHAIN_<NAME>

Any directory that has the prefix "TOOLCHAIN_" is interpreted as a directory that is toolchain specific. The
"NAME" corresponds to the value stored in the TOOLCHAIN make variable. For example, an IAR-specific set of
filesis located under a directory named TOOLCHAIN_IAR. Auto-discovery only includes the TOOLCHAIN_<NAME>
directories for the specified TOOLCHAIN. All others are ignored. ModusToolbox™ supports IAR, ARM, and
GCC_ARM.

3.5.1.3 TARGET_<NAME>

Any directory that has the prefix "TARGET_" is interpreted as a directory that is target specific. The "NAME"
corresponds to the value stored in the TARGET make variable. For example, a build with TARGET=CY8CPROTO-
062-4343wWignores all TARGET_ directories except TARGET_CYSCPROTO-062-4343W.

Note: The TARGET_ directory is often associated with the BSP, but it can be used in a generic sense. E.g.
if application sources need to be included only for a certain TARGET, this mechanism can be used
to achieve that.

Note: The output directory structure includes the TARGET name in the path, so you can build for target A
and B and both artifact files will exist on disk.

3.5.14 CONFIG_<NAME>

Any directory that has the prefix "CONFIG_" is interpreted as a directory that is configuration (Debug/Release)
specific. The "NAME" corresponds to the value stored in the CONFIG make variable. For example, a build with
CONFIG=CustomBuild ignores all CONFIG_ directories, except CONFIG_CustomBuild.

Note: The output directory structure includes the CONFIG name in the path, so you can build for config A
and B and both artifact files will exist on disk.

3.5.1.5 COMPONENT_<NAME>

Any directory that has the prefix "COMPONENT_" is interpreted as a directory that is component specific. The
"NAME" corresponds to the value stored in the cCOMPONENT make variable. For example, consider an application
that sets COMPONENTS+=comp1. Also assume that there are two directories containing component-specific
sources:

COMPONENT compl/src.c
COMPONENT comp2/src.c

Auto-discovery will only include COMPONENT_compl/src.c and ignore COMPONENT_comp2/src.c. If a specific
component needs to be removed, either delete it from the COMPONENTS variable or add it to the
DISABLE COMPONENTS variable.

3.5.1.6 BSP makefile

Auto-discovery will also search for a <TARGET>.mk file (aka, BSP makefile). If no matching BSP makefile is
found, it will fail to build. This file can also be manually specified by settingitinthe cYy EXTRA INCLUDES
variable.

User Guide 350f 84 002-29893 Rev. *N
2022-04-07

ModusToolbox™ user guide ‘ iﬁneon

ModusToolbox™ build system

3.5.1.7 Multi-project application with imported BSP

When you use an imported BSP to create a multi-project application, the system copies the BSP into an
application root folder. For these types of applications, the Project Creator tool creates an importedbsp.mk file
for each project with a SEARCH variable and relative path to the imported BSP. For example:

SEARCH+=<relative path to BSP folder>
If you do not use the Project Creator tool, you must create the files manually in each project directory.

In addition, when make getlibs isrun,itupdatesthe mtb.mk file with the following line:

-include ${CY INTERNAL APP PATH}/importedbsp.mk

The "-"in front of "include" tells the make system to perform a conditional include. It only includes the file if it
exists. If the file doesn't exist, the system does not issue a warning.

3.6 Pre-builds and post-builds

A pre-build or post-build operation is typically a script file invoked by the build system. Such operations are
possible at several stages in the build process. They can be specified at the application, BSP, and recipe levels.

You can pre-build and post-build arguments in the application Makefile. For example:

PREBUILD=command -argl -arg?2

If you want to run more than one command, separate them with a semicolon (;). For example:

PREBUILD=commandl -argl; command2 -argl -arg2

The sequence of execution in a build is as follows:

1. BSP pre-build - Defined using cY BsP_ PREBUILD variable.

2. Application pre-build - Defined using PREBUILD variable.

3. Source generation - Defined using CY RECIPE GENSRC variable.

4. Recipe pre-build - Defined using CY RECIPE PREBUILD variable.

5. Source compilation and linking.

6. Recipe post-build - Defined using cCYy RECIPE POSTBUILD variable.

7. BSP post-build - Defined using cy Bsp_POSTBUILD variable.

8. Application post-build - Defined using POSTBUILD variable.

The variable value is the relative path to the script to be executed.

Note: Pre-builds happen after the auto-discovery process. Therefore, if the pre-build steps generate any
source files to be included in a build, they will not be automatically included until the subsequent

build. In this scenario, this step should use the $ (shell) function directly in the application
Makefile instead of using the provided pre-build make variables. For example:

$ (shell bash ./custom gen.sh ARGl ARG2)

User Guide 36 of 84 002-29893 Rev. *N
2022-04-07

ModusToolbox™ user guide

infineon

ModusToolbox™ build system

3.7

Program and debug

The programming step can be done through the CLI by using the following make targets:

e program - Build and program the board.

e gprogram - Skip the build step and program the board.

e debug - Build and program the board. Then launch the GDB server.

e gdebug - Skip the build and program steps. Just launch the GDB server.

e attach - Starts a GDB client and attaches the debugger to the running target.

For CLI debugging, the attach target must be run on a separate shell instance. Use the GDB commands to
debug the application.

3.8

Available make targets

A make target specifies the type of function or activity that the make invocation executes. The build system
does not support a make command with multiple targets. Therefore, a target must be called in a separate make
invocation. The following tables list and describe the available make targets for all recipes.

3.8.1 General make targets

Target Description

all Same as build. That is, builds the application.
This target is equivalent to the build target.

getlibs Clones the repositories and checks out the identified commit.
The repos are cloned to the libs directory. By default, this directory is created in the application directory.
It may be directed to other locations usingthe CY GETLIBS PATH variable.

build Builds the application.
The build process involves source auto-discovery, code-generation, pre-builds, and post-builds. For faster
incremental builds, use the gbuild target to skip the auto-discovery step.

gbuild Quick builds the application using the previous build's source list.
When no other sources need to be auto-discovered, this target can be used to skip the auto-discovery
step for a faster incremental build.

program Builds the artifact and programs it to the target device.
The build process performs the same operations as the build target. Upon successful completion, the
artifact is programmed to the board.

gprogram | Quick programs a built application to the target device without rebuilding.
This target allows programming an existing artifact to the board without a build step.

debug Builds and programs. Then launches a GDB server.
Once the GDB server is launched, another shell should be opened to launch a GDB client.

gdebug Skips the build and program step and does Quick Debug; that is, it launches a GDB server.
Once the GDB server is launched, another shell should be opened to launch a GDB client.

attach Starts a GDB client and attaches the debugger to the running target.

clean Cleans the /build/<TARGET=> directory.
The directory and all its contents are deleted from disk.

help Prints the help documentation.
UsetheCY HELP=<name of target or variable> toseetheverbose documentation fora given
target or a variable.

User Guide 37 0of 84 002-29893 Rev. *N

2022-04-07

o~ _.
ModusToolbox™ user guide |nf|ne0n

ModusToolbox™ build system

3.8.2 IDE make targets
Target Description
eclipse Generates Eclipse IDE launch configs and project files.

This target expects the CY IDE PRJNAME variable to be set to the name of the application as defined
in the Eclipse IDE. For example, make eclipse CY IDE PRJINAME=AppVL1. If thisvariable is not
defined, it will use the APPNAME for the launch configs. This target also generates .cproject and .project
files if they do not exist in the application root directory.

Note: Project generation requires Python 3 to be installed and present in the PATH variable.
Note: To skip project creation and only create the launch configs, set CY MAKE IDE=eclipse.
vscode Generates VS Code IDE json files.

This target generates VS Code json files for debug/program launches, IntelliSense, and custom tasks.
These overwrite the existing files in the application directory except for settings.json.
ewarm8 Generates IAR-EW version 8 IDE .ipcffile.

This target requires you to also set TOOLCHAIN=IAR. It generates an IAR Embedded Workbench v8.x
compatible .ipcffile that can be imported into IAR-EW. The .ipcf file is overwritten every time this target is
run.

Note: Application generation requires Python 3 to be installed and present in the PATH variable.

uvision5 Generates Keil pVision v5 IDE .cpdsc, .gpdsc, and .cprj files.

This target requires you to also set TOOLCHAIN=ARM. It generates a CMSIS compatible .cpdsc and
.gpdsc files that can be imported into Keil puVision v5. Both files are overwritten every time this target is
run.

Note: Application generation requires Python 3 to be installed and present in the PATH variable.

3.8.3 Tools make targets

Target Description

open Opens/launches a specified tool. This is intended for use by the Eclipse IDE. Use make config,
config bt,orconfig usbdev instead.

This target accepts two variables: CY OPEN TYPE and CY OPEN_ FILE. At least one of these
must be provided. The tool can be specified by setting the CY OPEN_ TYPE variable. A specific file
can also be passed usingthe CY OPEN_FILE variable. Ifonly CY OPEN FILE is given, the build
system will launch the default tool associated with the file’s extension.

Supported types are: bt—-configurator capsense-configurator capsense-tuner
device-configurator dfuh-tool library-manager project-creator gspi-
configurator seglcd-configurator smartio-configurator usbdev-
configurator

modlibs Launches the library-manager executable for updating libraries.

The Library Manager can be used to add/remove libraries and to upgrade/downgrade existing
libraries.

config Runs the Device Configurator on the target *.modus file.
If no existing device-configuration files are found, the configurator is launched to create one.

config bt Runs the Bluetooth® Configurator on the target *.cybt file.

If no existing bt-configuration files are found, the configurator is launched to create one.
config_usbdev | Runsthe USB Configurator on the target *.cyusbdev file.

If no existing usbdev-configuration files are found, the configurator is launched to create one.
config_secure | Runsthe "Secure Policy" Configurator.

This configurator is intended only for devices that support secure provisioning.

User Guide 38 of 84 002-29893 Rev. *N
2022-04-07

ModusToolbox™ user guide

infineon

ModusToolbox™ build system

Target

Description

config ezpd

Runs the EZ-PD™ Configurator.
If no existing ez-pd-configuration files are found, the configurator is launched to create one.

config lin

Runs the LIN configurator.

If no existing lin-configuration files are found, the configurator is launched to create one.

3.8.4 Utility make targets
Target Description
progtool Performs specified operations on the programmer/firmware-loader.
This target expects user-interaction on the shell while running it. When prompted, you must specify
the command(s) to run for the tool.
bsp Generates a TARGET GEN board/kit from TARGET.
This target generates a new BSP with the name provided in TARGET _GEN based on the current
TARGET. The TARGET GEN variable must be populated with the name of the new TARGET.
Optionally, you may define the target device (DEVICE GEN) and additional devices
(ADDITIONAL DEVICES_ GEN) such asradios. For example:
make bsp TARGET GEN=NewBoard DEVICE GEN=CY8C624ABZI-S2D44
ADDITIONAL DEVICES GEN=CYW4343WKUBG
update bsp Change the device in a custom BSP generated by the make bsp command.
This target changes the device set in a custom BSP generated by the make bsp command. The
TARGET_ GEN variable will specify the BSP to modify. The DEVICE GEN variable will specify the
new target device of the BSP. For example:
make update bsp TARGET GEN=NewBoard DEVICE GEN=CY8C624ABZI-S2D44
lib2mtbx Convert .lib files to .mtbx files

This will recursively look for .lib files in CONVERSION PATH and create equivalent.mtbx files
adjacent to them. The type of .mtbx file is determined by the CONVERSION TYPE variable. This
can be either [local] or [shared]. The default is [local].

import deps

Import dependent .mtbx files of a given path into the application.

This will recursively look for .mtbx files in IMPORT PATH, copy them to the application's deps
directory and rename them to .mtb files. This makes them direct dependencies of the application.
Note that the import process is not applicable for applications using .lib files. These libraries must
instead be situated in the application directory. This process does not automatically lock the
libraries to the latest version; use the Library Manager to lock versions.

get app_info

Prints the application info for the Eclipse IDE for ModusToolbox™.
The file types can be specified by settingthe CY CONFIG FILE EXT variable. For example:
make get app info CY CONFIG FILE EXT="modus cybt cyusbdev"

get _env_info

Prints the make, git, and, application repo info.

This allows a quick printout of the current application repo and the make and git tool locations and
versions.

printlibs Prints the status of the library repos.
This target parses through the library repos and prints the SHA1 commit. It also shows whether the
repo is clean (no changes) or dirty (modified or new files).
check Checks for the necessary tools.
Not all tools are necessary for every build recipe. This target allows you to get an idea of which
tools are missing if a build fails in an unexpected way.
User Guide 390f 84 002-29893 Rev. *N

2022-04-07

o~ _.
ModusToolbox™ user guide |nf|ne0n

ModusToolbox™ build system

3.9 Available make variables

The following variables customize various make targets. They can be defined in the application Makefile or
passed through the make invocation. The following sections group the variables for how they can be used.

3.9.1 Basic configuration make variables

These variables define basic aspects of building an application. For example:

make build TOOLCHAIN=GCC ARM CONFIG=CustomConfig -38

Variable Description
TARGET Specifies the target board/kit (that is, BSP). For example, CYSCPROTO-062-4343W.
Example usage: make build TARGET=CY8CPROTO-062-4343W

APPNAME Specifies the name of the application. For example, "AppV1" > AppV1.elf.

Example usage: make build APPNAME="AppV1l"

This variable is used to set the name of the application artifact (programmable image). It also signifies
that the application will build for a programmable image artifact that is intended for a target board. For
applications that need to build to an archive (library), use the LIBNAME variable.

Note: This variable may also be used when generating launch configs when invoking the ec1ipse
target.
LIBNAME Specifies the name of the library application. For example, "LibV1" > LibV1.a.

Example Usage: make build LIBNAME="LibVv1l"

This variable is used to set the name of the application artifact (prebuilt library). It also signifies that the
application will build an archive (library) that is intended to be linked to another application. These
library applications can be added as dependencies to an artifact producing application using the
DEPENDENT LIB PATHS variable.

TOOLCHAIN | Specifies the toolchain used to build the application. For example, GCC_ARM.

Example Usage:make build TOOLCHAIN=IAR CY_COMPILER_PATH="<path>/IAR
Systems/Embedded Workbench 8.4/arm/bin"

Supported toolchains for this include GCC_ARM, IAR, and ARM.
CONFIG Specifies the configuration option for the build [Debug Release].

Example Usage: make build CONFIG=Release

The CONFIG variable is not limited to Debug/Release. It can be other values. However in those instances,
the build system will not configure the optimization flags. Debug=lowest optimization, Release=highest
optimization.

The optimization flags are toolchain specific. If you go with your custom config, then you can manually
set the optimization flag in the CFLAGS.

VERBOSE Specifies whether the build is silent [false] or verbose [true].

Example Usage: make build VERBOSE=true

Setting VERBOSE to true may help in debugging build errors/warnings. By default, it is set to false.

User Guide 40 of 84 002-29893 Rev. *N
2022-04-07

o~ _.
ModusToolbox™ user guide |nf|ne0n

ModusToolbox™ build system

3.9.2 Advanced configuration make variables

These variables define advanced aspects of building an application.

Variable Description

SOURCES Specifies C/C++ and assembly files outside of application directory.
Example Usage (within Makefile): SOURCES+=path/to/file/Sourcel.c

This can be used to include files external to the application directory. The path can be
both absolute or relative to the application directory.

INCLUDES Specifies include paths outside of the application directory.
Example Usage (within Makefile): INCLUDES+=path/to/headers

Note: These MUST NOT have —I prepended. The path can be either absolute or relative
to the application directory.

DEFINES Specifies additional defines passed to the compiler.
Example Usage (within Makefile): DEFINES+=EXAMPLE DEFINE=0x01

Note: These MUST NOT have —D prepended.

VFP_SELECT Selects hard/soft ABI for floating-point operations [softfp hardfp]. If not defined, this
value defaults to softfp.

Example Usage (within Makefile): VEP_SELECT=hardfp

CFLAGS Prepends additional C compiler flags.
Example Usage (within Makefile): CFLAGS+= -Werror -Wall -02
Note: If the entire C compiler flags list needs to be replaced, define the

CY RECIPE CFLAGS make variable with the desired C flags. The values
should be space separated.

CXXFLAGS Prepends additional C++ compiler flags.
Example Usage (within Makefile): CXXFLAGS+= -finline-functions
Note: If the entire C++ compiler flags list needs to be replaced, define the

CY RECIPE CXXFLAGS make variable with the desired C++flags. Usage is
similar to CFLAGS.

ASFLAGS Prepends additional assembler flags.

Note: If the entire assembler flags list needs to be replaced, define the
CY RECIPE ASFLAGS make variable with the desired assembly flags. Usage
is similar to CFLAGS.

LDFLAGS Prepends additional linker flags.
Example Usage (within Makefile): LDFLAGS+= -nodefaultlibs
Note: If the entire linker flags list needs to be replaced, define the

CY RECIPE LDFLAGS make variable with the desired linker flags. Usage is
similar to CFLAGS.

LDLIBS Includes application-specific prebuilt libraries.
Example Usage (within Makefile): LDLIBS+=. ./MyBinaryFolder/binary.o

Note: If additional libraries need to be added using -1 or -1, add to the
CY RECIPE EXTRA LIBS make variable. Usage is similar to CFLAGS.

User Guide 41 0f 84 002-29893 Rev. *N
2022-04-07

o~ _.
ModusToolbox™ user guide |nf|ne0n

ModusToolbox™ build system

Variable Description

LINKER_SCRIPT Specifies a custom linker script location.

Example Usage (within Makefile):
LINKER_SCRIPT=path/to/file/Custom Linkerl.ld

This linker script overrides the default.

Note: Additional linker scripts can be added for GCC via the LDFLAGS variable asa -L
option.

PREBUILD Specifies the location of a custom pre-build step and its arguments. This operation runs
before the build recipe's pre-build step.

Example Usage (within Makefile): PREBUILD=python example script.py
Note: BSPs can also define a pre-build step. This runs before the application pre-build
step.

If the default pre-build step needs to be replaced, definethe CY RECIPE PREBUILD
make variable with the desired pre-build step.

POSTBUILD Specifies the location of a custom post-build step and its arguments. This operation runs
after the build recipe's post-build step.

Example Usage (within Makefile): POSTBUILD=python example script.py

Note: BSPs can also define a post-build step. This runs before the application post-
build step.

Note: If the default post-build step needs to be replaced, define the
CY RECIPE POSTBUILD make variable with the desired post-build step.

COMPONENTS Adds component-specific files to the build.

Example Usage (within Makefile): COMPONENTS+=CUSTOM CONFIGURATION
Create a directory named COMPONENT_<VALUE> and place your files. Then provide
<VALUE> to this make variable to have that feature library be included in the build.

For example, create a directory named COMPONENT_ACCELEROMETER. Then include it in
the make variable: COMPONENT=ACCELEROMETER. If the make variable does not
include the <VALUE>, then that library will not be included in the build.

Note: If the default COMPONENT list must be overridden, define the
CY COMPONENT LIST make variable with the list of component values.

DISABLE_COMPONENTS Removes component-specific files from the build.
Example Usage (within Makefile): DISABLE _COMPONENTS=BSP_DESIGN MODUS

Include a <VALUE> to this make variable to have that feature library be excluded in the
build. For example, to exclude the contents of the COMPONENT_BSP_DESIGN_MODUS
directory, set DISABLE COMPONENTS=BSP DESIGN_ MODUS as shown.

DEPENDENT_LIB_PATHS List of dependent library application paths. For example, ../bspLib.

Note: This variable replaces the SEARCH LIBS AND INCLUDES variable.

An artifact-producing application (defined by setting APPNAME) can have a dependency
on library applications (defined by setting LIBNAME). This variable defines those
dependencies for the artifact-producing application. The actual build invocation of
those libraries is handled at the application level by defining the shared 1ibs target.
For example:

shared libs:
make -C ../bspLib build -j

User Guide 42 of 84 002-29893 Rev. *N
2022-04-07

o~ _.
ModusToolbox™ user guide |nf|ne0n

ModusToolbox™ build system

Variable Description

DEPENDENT_APP_PATHS List of dependent application paths. For example, ../cy_mO0Op_image.

The main application can have a dependency on other artifact producing applications
(defined by setting APPNAME). This variable defines those dependencies for the main
application. The artifacts of these dependent applications are translated to c-arrays and
are brought into the main application as regular c-files and are compiled and linked. The
main application also generates a "standalone" variant of the main application that
does not include the dependent applications.

SEARCH List of paths to include in auto-discovery. For example, ../mtb_shared/lib1.

When get1libs isrun for applications that use .mtb files, a file is generated in
/libs/mtb.mk. This file automatically populates the SEARCH variable with the locations
of the libraries in the shared repo location (set by the CY GETLIBS SEARCH PATH
andCY GETLIBS SHARED NAME variables). The SEARCH variable can also be used
by the application to include other directories to auto-discovery.

IMPORT_PATH Path to .mtbx dependency files to import into the application.

This variable must be defined when calling import deps. Any .mtbx dependency file
found in this directory will be imported into the application and will become a direct
dependency.

Note: This is not applicable for applications using .lib files.

CONVERSION PATH Path to the .lib files to convert to .mtbx files.

This variable must be defined when calling 1 ib2mtbx. Any .lib file found in this
directory will be converted.

CONVERSION_TYPE (optional) Defines the type of .mtbx file to create.

This variable can be set to [local] or [shared]. The default type is [local]. If [local], the
library will be deposited in the application's CY GETLIBS PATH directory when
performing get1libs. If [shared], the library will be deposited (when running get1ibs)
in the shared location as defined by CY GETLIBS SHARED PATH and

CY GETLIBS SHARED NAME.

FORCE Optional) Force overwrite existing files.

When this variable is set [true], 1 ib2mtbx overwrites any existing .mtbx files.

3.9.3 BSP make variables

These variables are used with the make bsp target.

Variable Description

DEVICE Device ID for the primary MCU on the target board/kit (set by TARGET.mk).

The device identifier is mandatory for all board/kits.

TARGET GEN Name of the new target board/kit.

Example Usage: make bsp TARGET GEN=MyBSP

This is a mandatory variable when calling the bsp make target. It is used to name the board/kit files
and directory.

DEVICE_GEN | (Optional) Device ID for the primary MCU on the new target board/kit.

Example Usage:make bsp TARGET GEN=MyBSP DEVICE GEN=CY8C624ABZI-S2D44

This is an optional variable when calling the bsp make target to replace the primary MCU on the board
(overwrites DEVICE).

If it is not defined, the new board/kit will use the existing DEVICE from the board/kit that it is copying
from.

User Guide 43 of 84 002-29893 Rev. *N
2022-04-07

o~ _.
ModusToolbox™ user guide |nf|ne0n

ModusToolbox™ build system

3.94 Getlibs make variables

These variables are used with the make getlibs target.

Variable Description

CY_GETLIBS_NO_CACHE Disables the cache when running get1ibs.

Example Usage:make getlibs CY GETLIBS NO CACHE=true

To improve the library creation time, the get1ibs target uses a cache located in the
user's home directory (SHOME for macOS/Linux and SUSERPROFILE for Windows).
Disabling the cache allows 3rd-party libraries to be brought in to the application
using .mtb files just like our libraries.

CY_GETLIBS_OFFLINE Use the offline location as the library source.

Example Usage:make getlibs CY GETLIBS OFFLINE=true

Setting this variable signals to the build system to use the offline location (Default:
<HOME=>/.modustoolbox/offline) when running the get 1ibs target. The location of
the offline content can be changed by definingthe CY GETLIBS OFFLINE PATH
variable.

CY_GETLIBS_PATH Absolute path to the intended location of libs directory.

Example Usage: make getlibs
CY_GETLIBS_PATH="path/to/directory"

The library repos are cloned into a directory named, libs (default:
<CY_APP_PATH=>/libs). Setting this variable allows specifying the location of the libs
directory to be elsewhere on disk.

CY_GETLIBS_DEPS_PATH Absolute path to where the library-manager stores .mtb and .lib files. Usage is similar
toCY GETLIBS PATH.

Setting this path allows relocating the directory that the library-manager uses to
store the .mtb / .lib files in your application. The default location is in a directory
named /deps (Default: <CY_APP_PATH>/deps).

Note: This variable requires ModusToolbox™ tools_2.1 or higher.

CY_GETLIBS_CACHE_PATH Absolute path to the cache directory. Usage is similarto CY GETLIBS PATH.

The build system caches all cloned repos in a directory named /cache (Default:
<HOME=>/.modustoolbox/cache). Setting this variable allows the cache to be relocated
to elsewhere on disk. To disable the cache entirely, set the

CY GETLIBS NO CACHE variable to [true].

Note: This variable requires ModusToolbox™ tools_2.1 or higher.

CY_GETLIBS_OFFLINE_PATH | Absolute path to the offline content directory. Usage is similar to

CY GETLIBS PATH.

The offline content is used to create/update applications when not connected to the
internet (Default: <HOME>/.modustoolbox/offline). Setting this variable allows to
relocate the offline content to elsewhere on disk.

Note: This variable requires ModusToolbox™ tools_2.1 or higher.

CY_GETLIBS_SEARCH PATH | Relative path to the top directory for get1ibs operation. Usage is similar to

CY GETLIBS PATH.

The get1ibs operation by default executes at the location of the CY APP PATH.
This can be overridden by specifying this variable to point to a specific location.

User Guide 44 of 84 002-29893 Rev. *N
2022-04-07

o~ _.
ModusToolbox™ user guide |nf|ne0n

ModusToolbox™ build system

Variable Description

CY GETLIBS SHARED PATH Relative path to the shared repo location.

All .mtb files have the format, <URI><COMMIT><LOCATION>. If the <LOCATION>
field begins with $$ASSET REPO$$, then the repo is deposited in the path
specified by the CY GETLIBS SHARED PATH variable. The default location is one
directory level above the current application directory (Default: ../). This is used with
CY GETLIBS SHARED NAME variable, which specifies the directory name.
CY_GETLIBS_SHARED NAME Directory name of the shared repo location.

All .mtb files have the format, <URI><COMMIT><LOCATION>. If the <LOCATION>
field begins with $SASSET REPO$$, then the repo is deposited in the directory
specified by the CY GETLIBS SHARED NAME variable. The default directory name
is "mtb_shared". This is used with CY GETLIBS SHARED PATH variable, which
specifies the directory path.

3.9.5 Path make variables

These variables are used to specify various paths.

Variable Description

CY_APP_PATH Relative path to the top-level of application. For example, ./

Settings this path to other than ./ allows the auto-discovery mechanism to search from
a root directory location that is higher than the application directory. For example,

CY APP PATH=../../ allowsauto-discovery of files from a location that is two
directories above the location of ./Makefile.

CY_BASELIB_PATH Relative path to the base library. For example, ./libs/recipe-make-catlia

This directory must be relative to CY APP_PATH. It defines the location of the library
containing the recipe Makefiles, where the expected directory structure is
<CY_BASELIB_PATH>/make. All applications must set the location of the recipe base
library. For applications using .mtb files, the BSP's TARGET.mk file sets this variable and
therefore the application does not need to.

CY_BASELIB_CORE_PATH | Relative path to the core base library. For example, ./libs/core-make

This directory must be relative to CY APP_PATH. It defines the location of the library
containing the core make files, where the expected directory structure is
<CY_BASELIB_CORE_PATH=>/make. All applications must set the location of the core base
library.

For applications using .mtb files, the BSP's TARGET.mk file sets this variable and
therefore the application does not need to. This variable is not applicable for
applications using the combined base library (such as recipe-make-catla).

CY_EXTAPP_PATH Relative path to an external application directory. For example, ../external

This directory must be relativeto CY APP PATH. Setting this path allows
incorporating files external to CYiAPiPiPAiTH.

Forexample,CY EXTAPP PATH=../external letsauto-discovery pullinthe
contents of ../external directory into the build.

Note: This variable is only supported in CLI. Use the shared 1ibs mechanism and
DEPENDENT LIB PATHS for tools and IDE support.

Note: The same functionality exists in the SEARCH variable. Using the SEARCH
variable is preferred over CY EXTAPP PATH.

User Guide 45 of 84 002-29893 Rev. *N
2022-04-07

o~ _.
ModusToolbox™ user guide |nf|ne0n

ModusToolbox™ build system

Variable Description

CY COMPILER PATH Absolute path to the compiler (default: GCC_ARM in CY TOOLS_ DIR).

Setting this path allows custom toolchains to be used instead of the defaults. This
should be the location of the /bin directory containing the compiler, assembler, and
linker. For example:

CY_COMPILER_PATH="C:/Program Files (x86)/IAR Systems/Embedded Workbench
8.4/arm/"

CY_TOOLS_DIR Absolute path to the tools root directory.

Example Usage: make build

CY TOOLS DIR="path/to/ModusToolbox/tools x.y"

Applications must specify the tools_<version> directory location, which contains the
root Makefile and the necessary tools and scripts to build an application. Application
Makefiles are configured to automatically search in the standard locations for various
platforms. If the tools are not located in the standard location, you may explicitly set
this.

CY_BUILD LOCATION Absolute path to the build output directory (default: pwd/build).

The build output directory is structured as /TARGET/CONFIG/. Setting this variable
allows the build artifacts to be located in the directory pointed to by this variable.
CY_PYTHON_PATH Specifies the path to a specific Python executable.

Example Usage:

CY PYTHON PATH="path/to/python/executable/python.exe"

For make targets that depend on Python, the build system looks for Python 3 in the
user's PATH and uses that to invoke python. If you have a version of Python installed in
a non-default location and do not have a path set for it, you can set CY PYTHON PATH
as a System Variable. In Windows, you must use forward slashes in the path to the
Python executable.

CY_DEVICESUPPORT_PATH | Relative path to the devicesupport.xml file.

This path specifies the location of the devicesupport.xml file for the Device Configurator.
It is used when the configurator needs to be run in a multi-application scenario.
TOOLCHAIN MK PATH Specifies the location of a custom TOOLCHAIN.mk file.

Defining this path allows the build system to use a custom TOOLCHAIN.mk file pointed
to by this variable.

Note: The make variables in this file should match the variables used in existing
TOOLCHAIN.mk files.
3.9.6 Miscellaneous make variables

These are miscellaneous variables used for various make targets.

Variable Description

CY_ IGNORE Adds to the directory and file ignore list. For example, ./filel.c./inc1

Example Usage: make build CY IGNORE="path/to/file/ignore file"
Directories and files listed in this variable are ignored in auto-discovery. This
mechanism works in combination with any existing .cyignore files in the application.
CY_SKIP_RECIPE Skip including the recipe Makefiles.

Setting this to [true/1] allows the application to not include any recipe Makefiles and
only include the start.mk file from the tools install.

CY SKIP CDB Skip creating .cdb files.

Constant Database (CDB) files are generated during the build process. Setting this to
[true] allows the build process to skip the .cdb files creation.

User Guide 46 of 84 002-29893 Rev. *N
2022-04-07

o _.
ModusToolbox™ user guide |nf| neon

ModusToolbox™ build system

Variable Description
CY_EXTRA_INCLUDES Specifies additional Makefiles to add to the build.
Example Usage:make build CY EXTRA INCLUDES="./customl.mk"

This variable provides a way of injecting additional make files into the core make
files. It can be used when including the make file before or after start.mk in the
application Makefile is not possible.

CY_LIBS_SEARCH_ DEPTH Directory search depth for.mtb files (default: 5).
Example Usage: make getlibs CY LIBS SEARCH DEPTH=7
This variable controls how deep the search mechanism in get1ibs looks for.mtb

files.
Note: Deeper searches take longer to process.
CY UTILS SEARCH DEPTH Directory search depth for.cyignore and TARGET.mk files (default: 5).

Example Usage:make getlibs CY UTILS SEARCH DEPTH=7

This variable controls how deep the search mechanism looks for .cyignore and
TARGET.mk files. Min=1, Max=9.

Note: Deeper searches take longer to process.

CY IDE PRJNAME Name of the Eclipse IDE application.
Example Usage: make eclipse CY IDE PRJNAME="AppV1"

This variable can be used to define the file and target application name when
generating Eclipse launch configurations in the eclipse target.

CY CONFIG _FILE EXT Specifies the configurator file extension. For example, *.modus.

Example Usage:make get app info CY CONFIG FILE EXT="modus
cybt cyusbdev"

This variable accepts a space-separated list of configurator file extensions to search
when runningthe get _app info target.
CY_SUPPORTED_TOOL_TYPES | Defines the supported tools for a BSP.

Example Usage (bsp.mk): CY SUPPORTED TOOL TYPES+=seglcd-
configurator

BSPs can define the supported tools that can be launched using the open target. The
supported tool types are bt —configurator, capsense-configurator,
capsense-tuner, device-configurator, dfuh-tool, library-
manager, project-creator, gspi-configurator, seglcd-
configurator, smartio-configurator,and usbdev-configurator
The BSP can make adjustments to the default recipe if needed.

User Guide 47 of 84 002-29893 Rev. *N
2022-04-07

o _.
ModusToolbox™ user guide |nf| neon

Board support packages
4 Board support packages

4.1 Overview

A BSP provides a standard interface to a board's features and capabilities. The APl is consistent across our kits.

Other software (such as middleware or an application) can use the BSP to configure and control the hardware.
BSPs do the following:

e initialize device resources, such as clocks and power supplies to set up the device to run firmware.

contain default linker scripts and startup code that you can customize for your board.

e contain the hardware configuration (structures and macros) for both device peripherals and board
peripherals.

e provide abstraction to the board by providing common aliases or names to refer to the board peripherals,
such as buttons and LEDs.

o include the libraries for the default capabilities on the board. For example, the BSP for a kit with
CAPSENSE™ capabilities includes the CAPSENSE™ library.

4.2 What’s in a BSP

This section presents an overview of the key resources that are part of a BSP. Using the MTB flow, applications
can share BSPs and libraries. BSPs that are local to the application are located in the libs subdirectory, while
shared BSPs are located in the mtb_shared directory adjacent to the application directory. For more details
about library management, refer to the Library Manager user guide.

The following shows a typical PSoC™ 6 BSP located in the application's libs subdirectory on the left. It also
shows a shared BSP located in the mtb_shared directory on the right.

v 2% > Hello_World ~ L > Hello_World |
) Includes 0 ncludes
(= build (= build

(2 > deps G > deps
ages (y images

si = libs
w [z TARGET_CYBCKIT-062-WIFI-BT i} main.c
[y COMPONENT_BSP_DESIGN_MODUS = LICENSE
2y COMPONENT_CMOP @ » Makefile
2y COMPONENT_CM4 = makefile.init
2y deps ¥ README.md
& docs
[F cybsp_types.h H Archives
il cybsp.c (= capsense
(R cybsp.h (= core-lib
(R system_psocf.h (= core-make
i CYBCKIT-062-WIFI-BT.mk = mtb-hal-catl
= EULA (= mitb-pdl-cat!
= LICENSE (= psocfemOp
3 locate_recipe.mk (7= recipe-make-catla
[+ README.md (= retarget-io
[¥ RELEASE.md ~ (= TARGET_CYBCKIT-062-WIFI-BT
5| versionxml v (= latest2.X
capsense.mth (= COMPOMNENT_BSP_DESIGN_MODUS
core-lib.mth (= COMPONENT_CMOP
core-make.mtb (= COMPONENT_CM4
mitb.mk (= deps
mtb-hal-catl.mtb = docs
mtb-pdl-catl.mth cybsp_types.h
psocfiernlp.mtb [cybsp.c
k] recipe-make-catlamtb cybsp.h
udb-sdio-whd.mtb system_psocb.h
il main.c @ CYSCKIT-062-WIFI-BT.mk
=3 LICENSE =| EULA
& = Makefile =| LICENSE

5 makefile.init & locate_recipe.mk

% README.md [README.md
| =5 mtb_shared | [¥] RELEASE.md

=) versionaxml
(= udb-sdio-whd

Note: For BTSDK v2.8 and later, shared BSPs and some shared libraries are located in subdirectories in
the mtb_shared directory. For example:

User Guide 48 of 84 002-29893 Rev. *N
2022-04-07

https://www.infineon.com/ModusToolboxLibraryManager

ModusToolbox™ user guide ‘ iﬁﬂ eon

Board support packages

(= core-ma ke
+ (= wiced_btsdk
v (= dev-kit
(> baselib
~ [bsp
v (= TARGET_CYW920706WCDEVAL
W [release-v2.8.0
= CYW920706WCDEVAL_24Mhz_SFLASH.btp
=| CYWS320706WCDEVAL_24Mhz.cgs
=| CYW920706WCDEVAL_40Mhz_SFLASH.btp
=| CYW920706WCDEVAL_40Mhz.cgs
=| CYW920706WCDEVAL_SFLASH.btp
=| CYW920706WCDEVAL.cgs
& CYWO20706WCDEVAL mk
=| LICENSE.bxt
& makefile
& platform.c
[README.md
=| uarthex

= versionxml
lla] wiced_platform.h
(= btsdk-include

= btsdk-tocls

For BTSDK v2.7 and earlier, shared BSPs and libraries can be found in the same structure, but without the
leading mtb_shared directory as shown in the previous image.

The following sections describe the various files and directories in a typical BSP:

4.2.1 COMPONENT_BSP_DESIGN_MODUS

This directory contains the configuration files (such as design.modus) for use with various BSP configurator
tools, including Device Configurator, QSPI Configurator, and CAPSENSE™ Configurator. At the start of a build,
the build system invokes these tools to generate the source files in the GeneratedSource directory. See
Modifying the BSP configuration for a single application to learn how the application can override this
component.

4.2.2 COMPONENT

Some applications may have additional "COMPONENT" subdirectories. These directories are conditional,
based on what the BSP is being built for. For example, the PSoC™ 6 BSPs include COMPONENT directories to
restrict which files are used when building for the Arm Cortex M4 or MO+ core.

4.2.3 deps subdirectory

The deps subdirectory inside the BSP contains .lib files from earlier versions of ModusToolbox™. This is not the
same as the deps subdirectory inside the application that contains the .mtb files. See Typical application
contents for more details.

4.2.4 docs subdirectory

The docs subdirectory contains the documentation in HTML format for the selected BSP.

4.2.5 Support files

Different BSPs will contain various files, such as the APl interface to the board's resources. For example, a
typical PSoC™ 6 BSP contains the following;:

e cybsp.c/.h-You need to include only cybsp.h in your application to use all the features of a BSP.
Callcybsp init () from cybsp.c toinitialize the board.

e cybsp_types.h - This currently contains Doxygen comments. It is intended to contain the aliases (macro
definitions) for all the board resources, as needed.

e system_psoc6.h - This file provides information about the chip initialization that is done pre- main().

User Guide 49 of 84 002-29893 Rev. *N
2022-04-07

ModusToolbox™ user guide ‘ iﬁneon

Board support packages

4.2.6 <BSP_NAME>.mk

This file defines the DEVICE and other BSP-specific make variables such as COMPONENTS. These are described
in the ModusToolbox™ build system chapter. It also defines board-specific information such as the device ID,
compiler and linker flags, pre-builds/post-builds, and components used with this board implementation.

4.2.7 locate_recipe.mk

This is a helper file for the BSP to specify the path to the core and recipe Makefiles that are included as
dependent libraries.

4.2.8 README/RELEASE.md

These are documentation files. The README.md file describes the BSP overall, while the RELEASE.md file covers
changes made to version of the BSP.

4.2.9 BTSDK-specific BSP files

BTSDK BSPs may optionally provide the following types of files:
e wiced_platform.h - Platform specific structures to define hardware information such as max number of
GPIOs, LEDs or.user buttons available

e Makefile - Provided to support LIB flow applications (BTSDK 2.7 and earlier). Not used in MTB flow BTSDK
2.8 or later applications.

e *hex - binary application image files that are used as part of the embedded application creation, program,
and/or OTA (Over-The-Air) upgrade processes.

e platform*.c/h - Platform specific source and header files used by platform and application initialization
functions.

e <BSP_NAME>*.cgs - Patch configuration records in text format, can be multiple copies supporting various
board configurations.

e <BSP_NAME>*.btp - Configuration options related to building and programming the application image, can
be multiple copies supporting various board configurations.

4.3 Creating your own BSP

This section contains a condensed version of these instructions. For a better understanding of the contents and
structure of a BSP and more detailed information about how to update the Wi-Fi and Bluetooth® connectivity
device and firmware in a BSP, refer to https://www.cypress.com/ModusToolboxCreateCustomBSP.

In most cases before you do any real design work on your application, you should create a BSP for your device
and/or board. This allows you to configure the settings for your own custom hardware or for different linker
options. Plus, you can save the BSP for use in future applications.

There are two basic methods to create a BSP; each involves creating an application. Using the first method,
specify the closest-matching BSP to your intended BSP. In this case, you usually have to remove various
settings and options that you don't need. For the second method, specify a "generic" BSP template when
creating your application. In this case, your BSP is essentially built from scratch, and you need to add and
configure settings and options for your needs.

Regardless of the method you choose, the basic process is the same for both:

1. Create a simple example application. Use a BSP that is close to your goal or select a "generic" BSP.

User Guide 50 of 84 002-29893 Rev. *N
2022-04-07

https://www.infineon.com/ModusToolboxCreateCustomBSP

ModusToolbox™ user guide ‘ iﬁneon

Board support packages

2. Navigate to the application directory, and run the make bsp target. Specify the new board name by
passing the value to the TARGET GEN variable. This this is the minimum required. For example, to create a
BSP called MyBSP:

make bsp TARGET GEN=MyBSP

Optionally, you may use DEVICE GEN specify a new device if it is different than the one included with the
original BSP. For example:

make bsp TARGET GEN=MyBSP DEVICE GEN=CY8C624ABZI-S2D44

Themake bspcommand creates a new BSP with the provided name at the top of the application project. It
automatically copies the relevant startup and linker scripts into the newly created BSP, based on the device
specified by the DEVICE GEN option.

It also creates .mtbx files for all the BSP's dependences. Themake getlib process automnatically creates
indirect dependencies for .mtbx files in custom BSPs.

Note: The BSP used as your starting point may have library references (for example, capsense.lib or udb-
sdio-whd.lib) that are not needed by your custom BSP. You can delete these from the BSP's deps
subdirectory. Be sure to remove the corresponding .mtbx files as well.

3. Update the application's Makefile TARGET variable to point to your new BSP. For example:

TARGET=MyBSP

4. Open the Device Configurator to customize settings in the new BSP's design.modus file for pin names,
clocks, power supplies, and peripherals as required. Also, address any issues that arise.

5. Start writing code for your application.

If using an IDE, you need to generate/regenerate the configuration settings to reflect the new BSP. Use the
appropriate command(s) for the IDE(s) that are being used. For example:

make vscode

Note: Use make help tosee all supported IDE make targets. See also the Exporting to supported IDEs
chapter in this document.

If you want to re-use a custom BSP on multiple applications, you can copy it into each application or you can
put it into a version control system such as Git. See the Manifest files chapter for information on how to create a
manifest to include your custom BSPs and their dependencies if you want them to show up as standard BSPs in
the Project Creator and Library Manager.

4.4 Modifying the BSP configuration for a single application

In cases where you don't want to create a BSP, you can modify the BSP configuration for a single application
(such as different pin or peripheral settings). However, you should not typically modify the BSP directly since
that results in changes to the BSP library. This would prevent you from updating the repository in the future,
and it may affect other applications in the same workspace. Instead, use the following process to create a
custom set of configuration files for a specific application:

1. Create adirectory at the root of the application to hold any custom BSP configuration files. For example:

Hello_World/COMPONENT_CUSTOM_DESIGN_MODUS

User Guide 51 of 84 002-29893 Rev. *N
2022-04-07

o _.
ModusToolbox™ user guide |nf| neon

Board support packages

This is a recommended best practice. In an upcoming step, you will modify the Makefile to include files from
that directory instead of the directory containing the default configuration files in the BSP.

2. Create a subdirectory for each target that you want to support in your application. For example:

Hello_World/COMPONENT_CUSTOM_DESIGN_MODUS/TARGET_CYS8CKIT-06252-43012

The subdirectory name must be TARGET_<board name>. Again, this is a recommended best practice. If you
only ever build with one BSP, this directory is not required, but it is safer to include it.

The build system automatically includes all source files inside a directory that begins with TARGET_,
followed by the target name for compilation, when that target is specified in the application's Makefile. The
file structure appears as follows. In this example, the COMPONENT_BSP_DESIGN_MODUS directory for this
application is overridden for just one target: CY8CKIT-06252-43012.

= build
v = COMPOMENT_CUSTOM_DESIGN_MODUS
(= TARGET_CYBCKIT-D6252-43012
= deps
= libs
lg| main.c
Makefile

3. Copy the design.modus file and other configuration files (that is, everything from inside the original BSP's
COMPONENT_BSP_DESIGN_MODUS directory), and paste them into the new directory for the target.

4. Inthe application's Makefile, add the following lines. For example:

DISABLE COMPONENTS += BSP DESIGN MODUS
COMPONENTS += CUSTOM DESIGN MODUS

Note: The Makefile already contains blank DI SABLE COMPONENTS and COMPONENTS lines where you
can add the appropriate names.

The first line disables the configuration files from the original BSP since they are now in different directory.

The second line is required to specify the new directory to include your custom configuration files, and to
ensure thatthe init cycfg all functionisstill called from the cybsp init function. The
init cycfg all function is used to initialize the hardware that was set up in the configuration files.

5. Customize the configuration files as required, such as using the Device Configurator to open the
design.modus file and modify appropriate settings.

Note: When you first create a custom configuration for an application, the Eclipse IDE Quick Panel entry
to launch the Device Configurator may still open the design.modus file from the original BSP
instead of the custom file. To fix this, click the Refresh Quick Panel link.

When you save the changes in the design.modus file, the source files are generated and placed under the
GeneratedSource directory. The file structure appears as follows:

gb‘ Binaries

B Archives

(7= build

v = COMPOMENT_CUSTOM_DESIGN_MODUS

w (7= TARGET_CY8CKIT-06252-43012

(z= GeneratedSource
cyreservedresources.list

design.cycapsense
design.cyqspi
design.modus

(&= deps

(= libs

User Guide 52 of 84 002-29893 Rev. *N
2022-04-07

ModusToolbox™ user guide (iﬁﬂ eon

Board support packages

6. When finished customizing the configuration settings, you can build the application and program the
device as usual.

User Guide 53 of 84 002-29893 Rev. *N
2022-04-07

o _.
ModusToolbox™ user guide |nf| neon

Manifest files
5 Manifest files
5.1 Overview

Manifests are XML files that tell the Project Creator and Library Manager how to discover the list of available
boards, example projects, libraries and library dependencies. There are several manifest files.

o The "super-manifest" file contains a list of URLs that software uses to find the board, code example, and
middleware manifest files.

e The "app-manifest" file contains a list of all code examples that should be made available to the user.

o The "board-manifest" file contains a list of the boards that should be presented to the userin the new
project creation tool as well as the list of BSP packages that are presented in the Library Manager tool.
There is also a separate BSP dependencies manifest that lists the dependent libraries associated with each
BSP.

e The "middleware-manifest" file contains a list of the available middleware (libraries). Each middleware
item can have one or more versions of that middleware available. There is also a separate middleware
dependencies manifest that lists the dependent libraries associated with each middleware library.

Beginning with the ModusToolbox™ 2.2 release, there are two versions of manifest files: the existing ones for
the LIB flow and earlier versions of ModusToolbox™ software, and new ones for the MTB flow (aka "fv2"). The
existing super-manifest file for use with the ModusToolbox™ 2.1 release and earlier contains only references to
manifests that contain items that support the LIB flow. The new super-manifest file for use with the
ModusToolbox™ 2.2 release and later contains references to all the manifest files.

Tools

ModusToolbox 2.0
ModusToolbox 2.1

Super manifests 'l’
Super manifest Super manifest
mib-super-manifest xml mtb-super-manifest-fv2 xmi

Data manifests

ModusToolbox 2.2

Application manifests for FV 1.0
f—> mib-ce-manifest xml 1
mib-bt-app-manifestxml

xml e

Manifest data that can be seen by all 2
mitb-bt-app-manifest-fv2.xml

Application manifests for Fv 2.0
mib-ce-manifest-iv2
versions of tools

Manifest data that can only been seen by
tools that support flow version 2.0

Board manifests for FV 1.0
—> mib-bsp-manifest xml <1
mtb-bi-bsp-manifest xml

Board manifests for FV 2.0
mib-bsp-manifest-fv2.xml re—1
‘mtb-bi-bsp-manifest-iv2 xml

Middleware manifests for FV 1.0
mtb-mw-manifest xml

mib-bi-mw-manifest xml

mitb-wifi-mw-manifestxmi

Middleware manifests for FV 2.0
mtb-mw-manifest-fv2.xml

Dependencies manifests
mtb-mw-dependencies-manifest.xml
‘mtb-bt-mw-dependencies-manifest.xml
mtb-wifi-mw-dependencies-manifestxml
mtb-bsp-dependencies-manifest xml
mib-bt-bsp-dependencies-manifest.xml y

o

5.2 Create your own manifest

By default, the ModusToolbox™ tools look for our manifest files maintained on our server. So, the initial lists of
BSPs, code examples, and middleware available to use are limited to our manifest files. You can create your
own manifest files on your servers or locally on your machine, and you can override where ModusToolbox™
tools look for manifest files.

User Guide 54 of 84 002-29893 Rev. *N
2022-04-07

ModusToolbox™ user guide ‘ iﬁﬂ eon

Manifest files

To use your own examples, BSPs, and middleware, you need to create manifest files for your content and a
super-manifest that points to your manifest files. To see examples of the syntax of super-manifest and manifest
files, you can look at files provided on GitHub:

e Super-manifest: https://github.com/Infineon/mtb-super-manifest

e Code example manifest: https://github.com/Infineon/mtb-ce-manifest

e BSP manifest (including dependencies): https://github.com/Infineon/mtb-bsp-manifest

e Middleware manifest (including dependencies): https://github.com/Infineon/mtb-mw-manifest

Make sure you look at the "fv2" manifest files if you are using the MTB flow.
The manifest system is flexible, and there are multiple paths you can follow to customize the manifests.

e You can customize a super-manifest file and override the default file used by the tools.

e You can create secondary super-manifest files that identify additional content. The tools will merge your
additional content with the default super-manifest.

e You can modify or replace any of the default manifest files (code example, BSP, etc.) with custom files, so
long as your custom super-manifest file points to those rather than the default files.

5.2.1 Overriding the standard super-manifest

The location of the standard super-manifest file is hard coded into all of the tools. However, you may override
this location by setting the CyRemoteManifestOverride environment variable. When this variable is set, the
tools use the value of this variable as the location of the super-manifest file and the hard-coded location is
ignored. For example:

CyRemoteManifestOverride=https://myURL.com/mylocation/super-manifest.xml

5.2.2 Secondary super-manifest

In addition to the standard super-manifest file, you can specify additional super-manifest files. This allows you
to add additional items (BSPs, code examples, libraries) along with the standard items. Do this by creating a file
called manifest.loc in a hidden directory in your home directory named ".modustoolbox."

<user_home>/.modusToolbox/manifest.loc

For example, a manifest.loc file may have:

This points to the IOT Expert template set
https://github.com/iotexpert/mtb2-iotexpert-manifests/raw/master/iotexpert-super-
manifest.xml

Note: You can point to local super-manifest and manifest files by using file:/// with the path instead of
https://. For example:

file:///C:/MyManifests/my-super-manifest.xml

If the manifest.loc file exists, then each line in this file is treated as the URL to a super-manifest file. These are
called the secondary or custom super-manifest files. The format of these files is exactly like the standard super-
manifest file. Each of the custom super-manifest files are treated as separate super-manifest files. See the
Conflicting data section for dealing with conflicts.

User Guide 55 of 84 002-29893 Rev. *N
2022-04-07

https://github.com/Infineon/mtb-super-manifest
https://github.com/Infineon/mtb-ce-manifest
https://github.com/Infineon/mtb-bsp-manifest
https://github.com/Infineon/mtb-mw-manifest

o~ _.
ModusToolbox™ user guide |nf|ne0n

Manifest files

5.2.3 Processing

The process for using the manifest files is the same for all tools that use the data. The first step is to access the
super-manifest file(s) to obtain a list of manifest files for each of the categories that the tool cares about. For
example, the Library Manager tool cares about the board and middleware manifests.

The second step is to retrieve the manifest data from each manifest file and merge the data into a single global
data model in the tool. See the Conflicting data section for dealing with conflicts.

There is no per-file scoping. All data is merged before it is presented. The combination of a super manifest file
and the merging of all of the data allows various contributors, including third party contributors, to make new
data available without requiring coordinated releases between the various contributors.

The following table shows how manifests are processed:

Source Syntax Effect
CyRemoteManifestOverride | valid URL (e.g., file:/// ... or http://...) | Use that URL to fetch the super-manifest.

Fragment (e.g., my/manifests/super- | Append the home directory to the front (e.g.,
manifest.xml file:///c:/Users/benh/my/manifests/super-
manifest.xml)

manifest.loc valid URL (e.g., file:/// ... or http:// ...) | Use that URL to fetch the super-manifest.

Fragment (e.g., my/manifests/super- | Append the directory in which manifest.loc
manifest.xml resides (e.g.,
file:///c:/Users/benh/.modustoolbox/my/manifes
ts/super-manifest.xml)

Manifest URIs valid URI (e.g., file:/// ... or http:// ...) Use that URI to fetch the manifest.
Manifest URIs from a local fragment (e.g., Append the directory in which source super-
super-manifest file my/manifests/manifest.xml) manifest resides (e.g.,

file:///c:/Users/benh/.modustoolbox/my/manifes
ts/manifest.xml

Manifest URIs from a remote | fragment (e.g., Append the home directory to the front (e.g.,
super-manifest file my/manifests/manifest.xml) file:///c:/Users/benh/my/manifests/manifest.xml)
5.2.4 Conflicting data

Ultimately, data from all of the super-manifest and manifest files are combined into a single data collection of
BSPs, code examples, and middleware. During the collation of this data, there may be conflicting data entries.
There are two types of conflicts.

The first kind is a conflict between data that comes from the primary super-manifest (and linked manifests) and
data that comes from the custom super-manifest (and linked manifests). In this case, the data in the custom
location overwrites the data from the standard location. This mechanism allows you to intentionally override
data that is in the standard location. In this case, no error or warning is issued. It is a valid use case.

The second kind of conflict is between data coming from the same source (that is, both from primary or both
from secondary). In this case, an error message is printed and all pieces of conflicting data are removed from
the data model. This is done because in this case, it is not clear which data item is the correct one.

User Guide 56 of 84 002-29893 Rev. *N
2022-04-07

o~ _.
ModusToolbox™ user guide |nf|ne0n

Manifest files

5.3 Using offline content

In normal mode, ModusToolbox™ tools look for manifest files maintained on GitHub and downloads the
firmware libraries from git repositories referenced by the manifests. If a network connection to online resources
is not available, you can download a copy of all manifests and content, and then point the tools to use this copy
in offline mode. This section describes how to download, install, and use the offline content.

Note: ModusToolbox™ libraries are updated frequently, and the offline content does not always have the
latest versions available. We strongly recommend using the online content whenever possible. See
https://community.cypress.com/docs/DOC-19903 for more details.

1. Download the modustoolbox-offline-content.zip file from our website:

https://softwaretools.infineon.com/tools/com.ifx.tb.tool.modustoolboxofflinecontentpackage

2. Ifyou do not already have a hidden directory named .modustoolbox in your home directory, create one.
Using Cygwin on Windows for example:

mkdir -p "SUSERPROFILE/.modustoolbox"

3. Extract the ZIP archive to the /.modustoolbox sub-directory in your home directory. The resulting path
should be:

~/.modustoolbox/offline

The following is a Cygwin on Windows command-line example to use for extracting the content:
unzip —-gbod "SUSERPROFILE/.modustoolbox" modustoolbox-offline-content.zip

Note: If you previously installed a copy of the offline content, you should delete the existing
~/.modustoolbox/offline directory before extracting the archive. Using Cygwin on Windows for
example:

rm —-rf "SUSERPROFILE/.modustoolbox/offline"

4. To use the Project Creator GUI or Library Manager GUI in offline mode, select Offline from the Settings
menu (refer to the appropriate user guide for details).

Note: Make sure CyRemoteMani festOverride variable is not set when you use offline mode.

5. To use the Project Creator CLI in offline mode, execute the tool with the --of f1ine argument. For
example:

project-creator-cli --board-id CY8CPROTO-062-4343W --app-id mtb-example-psoc6-
hello-world --offline

6. The Project Creator and Library Manager tools execute the make getlibs command under the hood to
download/update the firmware libraries. To execute the make getlibs targetin offline mode, pass the
CY GETLIBS OFFLINE=true argument:

make getlibs CY GETLIBS OFFLINE=true

To override the location of the offline content, set the CY GETLIBS OFFLINE PATH variable:

make getlibs CY GETLIBS OFFLINE=true
CY GETLIBS OFFLINE PATH="~/custom/offline/content"

Refer to the ModusToolbox™ build system chapter for more details about make targets and variables.

User Guide 57 of 84 002-29893 Rev. *N
2022-04-07

https://community.cypress.com/docs/DOC-19903
https://softwaretools.infineon.com/tools/com.ifx.tb.tool.modustoolboxofflinecontentpackage

o~ _.
ModusToolbox™ user guide |nf|ne0n

Manifest files

7. Once network connectivity is available, you can use the Library Manager tool to update the ModusToolbox™
project previously created offline to use the latest available content. Or you can execute the make
getlibs command without the cCY GETLIBS OFFLINE argument.

5.4 Access private repositories

You can extend the custom manifest with additional content from git repositories (repos) hosted on GitHub or
any other online git server. To access private git repos, you must configure the git client so that the Project
Creator and Library Manager tools can authenticate over HTTP/HTTPS protocols without an interactive
password prompt.

Note: While you can host libraries on private repos, the custom content manifest must be accessible
without authentication (that is, it cannot be hosted on a private git repo).

To configure git credentials for non-interactive remote operations over HTTP protocols, refer to the git
documentation:

e https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage

e https://git-scm.com/docs/git-credential-store

The simplest way is to configure a git-credential-store and save the HTTP credentials is in a plain text file. Note
that this option is less secure than other git credential helpers that use OS credentials storage.

The following steps show how to configure a git client to access GitHub private repositories without a password
prompt:

1. Login to GitHub and go to Personal access tokens: https://github.com/settings/tokens

2. Click Generate new token to open the New personal access token screen.
3. Onthatscreen:

a. Type some text in the Note field.

b. Under Select scopes, click on repo.

c. Click Generate token (scroll down to see the button).

d. Copy the generated token.

4. Open aninteractive shell (for example, modus-shell\Cygwin.bat on Windows), and type the following
commands (replace the user name and token with your information):

git config --global credential."https://github.com".helper store

GITHUB USER=<your-github-username>

GITHUB TOKEN=XXXXXXXXXXXXXXXXXKXXXXXXXXXXKKXXXXKXX # generated at
https://github.com/settings/tokens

echo "https://$GITHUB USER:$SGITHUB TOKEN@github.com" >> ~/.git-credentials

After entering the commands, you can clone private GitHub repositories without an interactive user/password
prompt.

Note: A GitHub account password can be used instead of GITHUB TOKEN, in case the 2FA (two-factor
authentication) is not enabled for the GitHub account. However, this option is not recommended.

User Guide 58 of 84 002-29893 Rev. *N
2022-04-07

https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage
https://git-scm.com/docs/git-credential-store
https://github.com/settings/tokens

ModusToolbox™ user guide ‘ iﬁn eon

Using applications with third-party tools

6 Using applications with third-party tools

ModusToolbox™ software includes a variety of ways to use applications with third-party tools. This chapter
covers the following:

e |mportto Eclipse

e Exporting to supported IDEs

e Generating files for XMC™ Simulator tool

6.1 Import to Eclipse

The easiest way to create a ModusToolbox™ application for Eclipse is to use the Eclipse IDE included with the
ModusToolbox™ software. ModusToolbox™ includes an Eclipse plugin that provides links to launch the Project
Creator tool and then import the application into Eclipse. For details, refer to the Eclipse IDE for
ModusToolbox™ quick start guide or user guide.

If you already have a ModusToolbox™ application created some other way than through the included Eclipse
IDE, you can import that application for use in Eclipse as follows:

1. Openthe Eclipse IDE included with ModusToolbox™, and select Import Application on the Quick Panel

2. Inthe Project Location field, click the Browse... button; navigate to and select the application’s directory.

[Import Eclipse IDE for MedusToolbox™ Project O X
Project information.
Enter the directory of the ModusToolbox™ project to be imported,
Project Location: | C\Users\XV\examples | EErowse...i
'/?3' Finish Cancel

3. Click Finish.

The application displays in the Eclipse IDE Project Explorer.

User Guide 59 of 84 002-29893 Rev. *N
2022-04-07

http://www.infineon.com/ModusToolboxQSG
https://www.infineon.com/MTBEclipseIDEUserGuide

ModusToolbox™ user guide (iﬁﬂ eon

Using applications with third-party tools

6.2 Exporting to supported IDEs

6.2.1 Overview

This chapter describes how to export a ModusToolbox™ application to various supported IDEs in addition to the
provided Eclipse IDE. As described Getting started chapter, the Project Creator tool includes a Target IDE
option that generates files for the selected IDE. Also, as noted in the ModusToolbox™ build system chapter, the
make command includes various targets for the following IDEs:

e Visual Studio (VS) Code: make vscode

e |AREmbedded Workbench: make ewarm8 TOOLCHAIN=IAR

o KeilpVision:make uvision5 TOOLCHAIN=ARM

6.2.2 Export to VS Code

This section describes how to export a ModusToolbox™ application to VS Code.

6.2.2.1 Prerequisites

e ModusToolbox™ 2.4 software and application
e VS Codeversion 1.42.x or later

e VS Code extensions. Install the following.

Note: These versions change often; use the most current.

e (C/C++tools

*

C/C++ n263 PoAM 35
C/C++ IntelliSense, debugging, and code browsing.
Microsoft)

e Cortex-Debug

Cortex-Debug 034 P6K K5

ARM Cortex-M GDB Debugger support for VSCode
marus25]

e For J-Link debugging, download and install J-Link software:

https://www.segger.com/downloads/jlink

6.2.2.2 Process example
1. Create a ModusToolbox™ application.
a. Ifyou use the Project Creator tool, choose "VS Code" from the Target IDE pull down menu.

b. If you use the command line, open an appropriate shell program (see CLI set-up instructions), and
navigate to the application directory, and run the following command:

make vscode

Either process generates json files for debug/program launches, IntelliSense, and custom tasks.

Note: Any time you update/patch the tools for your application(s), that path information might change.
So, you will need to regenerate the needed support files by running the make vscode command
or update them manually.

User Guide 60 of 84 002-29893 Rev. *N
2022-04-07

https://www.segger.com/downloads/jlink

o _.
ModusToolbox™ user guide |nf| neon

Using applications with third-party tools

2. Open the VS Code tool.

a. Toopenthe application and the mtb_shared directory in the same workspace, select File > Open
Workspace...

File Edit Selection View Go Run

New File Ctri+N

New Window Ctrl+shift+N

Open File... Ctri+0
Open Folder... Ctri+K Ct+0
‘Open Workspace...

Open Recent

Navigate to the application directory and select the <application_name=>.code-workspace file.

If you have several applications in the workspace, you can add them using Add workspace folder...

b. Toopen justthe application and select File > Open Folder...

File Edit Selection View Go Debug

@ New File Cirl+N
New Window Cirl+Shift+N
Open File... Ctri+0
Open Folder... Ciri+K Cti+0
Open Workspace...

Open Recent

Note: On macOS, this command is File > Open...

Navigate to and select the application directory, and then click Select Directory.

3. When your application opens in the VS Code IDE, select Terminal > Run Build Task...

Terminal Help

New Terminal Ctrl+Shift+

Split Terminal Ctrl+Shift+5

Run Task...
Run Build Task... Cirl+shift+B
Run Active File

Run Selected Text

4. Then, select Build: Build [Debug]. After building, the VS Code terminal should display messages similar to
the following:

.cy_sharedmem
-noinit
-bss

Total Internal Flash (Available)
Total Internal Flash (Utilized)

Total Internal SRAM (Available)
Total Internal SRAM (Utilized)

Terminal will be reused by tasks, press any key to close it.

User Guide 61 of 84 002-29893 Rev. *N
2022-04-07

o _.
ModusToolbox™ user guide |nf| neon

Using applications with third-party tools

6.2.2.3 To debug using KitProg3/MiniProg4

Click the Run and Debug icon on the left and then click the Play button.

) FEle Edit Selection View Go Run Terminal Help

RUI DEEUG [> Launch PSoC6 CM4 (KitProg3_MiniProgd) ~

~ VARIABLES

The VS Code tool runs in debug mode.

File Edit Selection View Go Run Terminal Help main.c - Hello_World - Visual Studio Code
RUN B Launch PSoC6 CM4 (KitProg3_MiniProg4) 2 ¥ T 90

~ VARIABLES main.c »

v Local

» Global

> Static

main()

t_t result;

result = cybsp_init();

» CALL STACK PAUSED ON START 4 ha du mode: Thread

main@dx10002388 mainc 87

mode: Thread

~ BREAKPOINTS
» CORTEX PERIPHERALS
> CORTEX REGISTERS > |
£° releasev200* O ®0A0 &> Launch PSoC6 CM4 (KitProg3_MiniProgd) (Hello_ World) In97,Col 1 Spaces4 UTFE8 LF € MTIB & 0

6.2.2.4 To debug using J-Link

You can use a J-Link debugger probe to debug the application.

1. Navigate to and open the global settings.json file. If there is no such file, then create one. The file is located
here by default:

o Windows: %APPDATA%/Code/User/settings.json
e macOS: SHOME/Library/Application Support/Code/User/settings.json
e Linux: SHOME/.config/Code/User/settings.json

User Guide 62 of 84 002-29893 Rev. *N
2022-04-07

o _.
ModusToolbox™ user guide |nf| neon

Using applications with third-party tools

2. Add the path to the J-Link GDB server. For example:

{"cortex—-debug.JLinkGDBServerPath": "C:/Program Files
(x86) /SEGGER/JLink/JLinkGDBServerCL"}

e Windows: "cortex-debug.JLinkGDBServerPath": "<JLinkInstallDir>/JLinkGDBServerCL"

e macOS/Linux: "cortex-debug.JLinkGDBServerPath":
"<JLinkInstallDir>/JLinkGDBServer"

Note: The J-Link path can be configured in the local application's settings, if needed.

{} settingsjson
{

fl LICENSE

main.c

3. Click the Run and Debug icon, select Launch PSOC6 CM4 (JLink) config, and click the Play button.

File Edit Selection View Go Run Terminal Help
RUN [Launch PSoC6 CM4 (JLink) v 8 o -

~ VARIABLES

&

~~ BREAKPOINTS

User Guide 63 of 84 002-29893 Rev. *N
2022-04-07

ModusToolbox™ user guide ‘ iﬁneon

Using applications with third-party tools

6.2.3 Export IAR EWARM (Windows only)

This section describes how to export a ModusToolbox™ application to IAR Embedded Workbench and debug it
with CMSIS-DAP or J-Link.

6.2.3.1 Prerequisites

e ModusToolbox™ 2.4 software and application

e Python3.7isinstalled in the tools_2.4 directory, and the make build system has been configured to use it.
You don't need to do anything if you use the modus-shell/Cygwin.bat file to run command line tools.

However, if you plan to use your own version of Cygwin or some other type of bash, you will need to ensure
your system is configured correctly to use Python 3.7. Use the CY PYTHON PATH as appropriate.

e |AREmbedded Workbench version 8.42.2 or later
e PSoC™6 Kit (for example, CYSCPROTO0-062-4343W) with KitProg3 FW
e For J-Link debugging, download and install J-Link software:

https://www.segger.com/downloads/jlink/JLink Windows.exe

6.2.3.2 Process example
1. Create a ModusToolbox™ application.
a. Ifyou use the Project Creator tool, choose "IAR" from the Target IDE pull down menu.

b. If you use the command line, open an appropriate shell program (see CLI Set-up Instructions), navigate
to the application directory, and run the following command:

make ewarm8 TOOLCHAIN=IAR

Note: This sets the TOOLCHAIN to IAR in the Embedded Workbench configuration files but not in the
ModusToolbox™ application’s Makefile. Therefore, builds inside IAR Embedded Workbench will use
the IAR toolchain while builds from the ModusToolbox™ environment will continue to use the
toolchain that was previously specified in the Makefile. You can edit the Makefile’s TOOLCHAIN
variable if you also want ModusToolbox™ builds to use the IAR toolchain.

Note: Check the output log for instructions and information about various flags.

An |IAR connection file appears in the application directory. For example:

mtb-example-psoc6-capsense-buttons-slider-freertos.ipcf
2. StartIAR Embedded Workbench.

3. Onthe main menu, select Project > Create New Project > Empty project and click OK.

User Guide 64 of 84 002-29893 Rev. *N
2022-04-07

https://www.segger.com/downloads/jlink/JLink_Windows.exe

ModusToolbox™ user guide

Using applications with third-party tools

Infineon

4. Browse to the ModusToolbox™ application directory, enter a desired application name, and click Save.

« “ 4 | |« Users » vmed > CapSenseButtonsandSliderFreeRTOS v @ | Search CapSenseButtonsandS.. ©
Organize * New folder - @
J 3D Objects A Name Date modified Type Size
I Deskicp git File folder
5] Documents build File folder
4 Downloads images File folder
b Music libs File folder
=/ Pictures
B videos
s Windows (C:)
v
File name: | mtb-example-psoch-capsense-buttons-slider-freertos v
Save as type: | Project Files (".ewp) ~
~ Hide Folders Save Cancel

5. Afterthe application is created, select File > Save Workspace. Then, enter a desired workspace name.

6. Select Project>Add Project Connection and click OK.

7. Onthe Select IAR Project Connection File dialog, select the .ipcf file and click Open:

¢ Select IAR Project Connection File

v O Search CapSenseButtonsandS... 2@

== @ @
Date modified Type

File folder
File folder
File folder
File folder
File folder
IPCF File

>

= . 4 > Volodymyr Medvid > CapSenseButtonsandSliderFreeRTOS
Organize v Mewfolder
38 This Pe Hame
M 3D Objects -git
I Desktop build
[Documents imeges
libs
Jb Downloads
settings
D Music . ;
[mtb-example-psoct-capsense-buttons-slider-freertos.ipcf
&=/ Pictures
Videos
e Windows (C:)
e Network 4 =
File name: | mth-example-psoct-capsense-buttens-slider-freertos.ipcf

| [1AR Project Connection File (- ~

8. Onthe main menu, Select Project > Make.

Note:

If you don't care about staying connected to the ModusToolbox™ tools that generate the project
files, you can delete the .ipcf file from the workspace and restart IAR. The official IAR site discusses

this option: https://github.com/IARSystems/project-migration-tools

If you don't remove the .ipcf file, you need to make all file/group additions at the workspace level.

e Test-IAR-2 - IAR Embedded Workbench IDE - Arm 9.10.2
File Edit View Project Simulator Tools Window Help
NORG.ELETLDC
Workspace v ax
Debug ~
Files L]
i Options...
L
i Make
Compile
Rebuild All
Clean
C-STAT Static Analysis >
Stop Build
Testla Add > Add Files...
Build e Add Group...

9. Connectthe PSoC™ 6 kit to the host PC.

User Guide

65 of 84

002-29893 Rev. *N
2022-04-07

https://github.com/IARSystems/project-migration-tools

ModusToolbox™ user guide

Using applications with third-party tools

6.2.3.3 To use KitProg3/MiniProg4

1.

As needed, run the fw-loader tool to make sure the board firmware is upgraded to KitProg3. See the

KitProg3 User Guide for details. The tool is in the following directory by default:

<user_home>/ModusToolbox/tools_2.4/fw-loader/bin/

2. Select Project > Options > Debugger and select CMSIS-DAP in the Driver list:

Options for node "mtb-example-psoct-capsense-buttons-slider-freertos"

Categony:

General Options
Static Analysis
Runtime Checking
CfC++ Compiler
Assembler
Qutput Converter
Custom Build

Setup Dowrload Images Mutticore Extra Options = Plugins

Driver Bunto

Factory Settings

Build Actions

[cmsis pap v

[ram

Linker
Simulator

CADI

CMSIS DAP

GDB Server

et
IHink/J-Trace

TI Stellaris
Mu-Link:

PE micro

STLINK
Third-Party Driver
TIMSP-FET
TI¥DS

G \debugger\Cypress\PSoCE\CYSCE: |

Cancel

3. Select the CMSIS-DAP node, switch the interface from JTAG to SWD, and set the Interface speed to 2MHZ.

Category:

General Options
Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
Output Converter
Custom Build
Build Actions
Linker
Debugger
Simulator
CADI
GDB Server
I-jet
J-Link/)-Trace
TI Stellaris
Nu-Link
PE micro
ST-LINK
Third-Party Driver
TI MSP-FET
TIXDS

Factory Settings

Setup Interface Breakpoints
Probe config Probe configuration fie
oAk Soeiride defuc
From fie
Explicit
Interface Expicit probe configuration
JTAG Multi-targ 8
® SWD

Interface speed
2MHz

0K Cancel

4. Click OK.

User Guide

66 of 84 002-29893 Rev. *N

2022-04-07

Infineon

https://www.infineon.com/documentation/development-kitsboards/kitprog-user-guide

ModusToolbox™ user guide

Infineon

Using applications with third-party tools

5. Select Project > Download and Debug.

The IAR Embededed Workbench starts a debugging session and jumps to the main function.

(=]

File Edit View

Project Debug

hinRe =2 XEE/Dc

Disassembly

CMSIS-DAP Tools

Window Help

26O % e

0E0 he

©co.

N3 r o »

O o Dionawis

‘Workspace ¥ 3 X | AR Information Center for Arm main.c X | Registers 1 ¥ B X Disassembly v X
Debug +| |mainQ f0 Fnd[] G CurentCPL | Goto Memary
Files e o . * [Name Value Disassermbly ~
B @ mtb-example-psoc6-capse... ¥ s (ConfigMINIMAL STACK SIZE) 000000000 01000 dede: Ozesbg 0x0ad0
= ta-example-psoc6-capsen 70 (configMINIMAL STACK SIZE) 0=E000EDEE 0x1000 " dee?: 0za8is

7 008000000 0x1000 deed: 0zf7ff OxfscH
W coredlib 72 3 used in this pr + 000600305 break:
73 #asfine SINGLE_ELEMENT_QUEUE 1w 000000000 0x1000 'deed: Oze7dl
7 000000000 break:
75 0200000000 0x1000 'deea: O0xe7d0
DG /AR KRR R A AR KRR AR KR LA E AR E4 AR KRR R A4 £ KA AR KR EAR =lid00s 75 e s
Fa 77 | * Function Name: main(} 0RFC12CC3HE 0=1000 'dcf0: 0x000d°' 0007
T8 | AR AN KA KR KRR AR AR RA AR R AR KA KA KA R AR EAAEA AR KRR AR A KA R AR EAREAREAR e LD detd. Dannng 4240
Lg s Source 3] smossry: § . 0:1000D55C 0x1000'dcf8: 0x0800 ' 59c
80 | 4 System entrance point. This function sets up user tasks and then starts = =
cvhspc = |, ic Rivs schcdator, 0x1000D55C __a=n(Blkpt. 1
cycfac wil B 000000000 CY_HALT
cycly_capsense.c 83 | « Retur 0260000000 01000 'defc: Oxbell
cyefg_clocks.c g1 | ¢ int 000000000 H
cycfy_peripherals.c es | « 01000000 0x1000 'dofe: 0:4770
cycig_pins.c 86 L At A AR AR AR AL R RA R RA ARk LA R AR KA R AR EARRAA R AR AR KRR EAREAR L int main{void)
cyclg_gspi_memslatc ® 87 int main(void) 0x080FF800 i
88l [0x1000DE?B nain
89 cy_rslt_t result; PRIHASK 000000001
90 # BASEPRI 000000000 result = oybsp_init():
s1 ‘ " BASEPRI_MAX 0x00000000 0x1000°dd02: 0xf7fe Oxfbdf
B capsense_task.c g2 result = cybsp_init{): % FAULTHASK 0x00000000 if (result != CY_RSLT_SU
|— B capsense_taskh e & CONTROL 0x00000004 01000 'dd06: 0=2800
— o | Deard in: ' CYCLECOUNTER 25183 0x1000'dd08: 0=d001
:f[] if (result CCTTHERL 25188 CY_ASSERT(0)
— Bled_taskh &kl CCTINERZ 25188 0x1000'dd0a: Oxf74f OxEE?
— 37 ©Y_ASSERT (0)
main.c 98 |) CCSTEP 25188 __enable_izq();
— O mitb-exemple-psoc6-capsen = 0x1000'dde: Oxbb62
L@ o Output P led_connand_data_g - =0
101
102 0x1000'dd10: 0x2200
103 0x1000'dd12: 0x2108
MEE . 0x1000 'dd14: 0x2001
105 . 0x1000'dd16: 0mf747 DmffTdw
tbresampiep D b i < > v > >
Debug Log ~ 3 X CallStack ~ 3 x
Log % nain
ThuFeb 13,2020 13:36:36: Targetreset [_call_nain + Ozd]
Thu Feb 13, 2020 13:36:36: DMAC/Trace: Configuring p\alfurm side W0 component
Thu Feh 13, 2020 13:36:36 INFO: Configuring race using 'swo . E00 _0002)' seting .
Thu Feh 13, 2020 13:36:35 INFO: SWO trace mode is nat supported by the pmbe(useueunewrame probe) -race is disat
v

< >
Build DebugLog < >

Ready Ln &7, Col 15 UTF-8_ CAP NUM OVR B

6.2.3.4

For a single-core PSoC™ 6 MCU, you must specify a special type of reset, as follows:

To use MiniProg4 with PSoC™ 6 single core and PSoC™ 6 256K

Category:

General Options
Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
Output Converter
Custom Buid
Build Actions
Unker
Debugger
Simulator
CADI
GDB Server
Ijet
J-Unk/)-Trace
TI Stellaris
Nu-Unk
PE micro
ST-LINK
Third-Party Driver

Setup Interface Breakponts
Reset

Hardware

Duration

Log communication

Factory Settings

Delay after:

Emulator
Aways prompt for probe
lection

Serial no

User Guide

67 of 84

002-29893 Rev. *N

2022-04-07

ModusToolbox™ user guide

Infineon

Using applications with third-party tools
6.2.3.5 To use J-Link

You can use a J-Link debugger probe to debug the application.
1.

2. Then select J-Link/J-Trace as the active driver:

Options for node "mtb-example-psoct-capsense-buttons-slider-freertos”

Category Factory Settings
General Options
Static Analysis
Runtime Checking
C/C++ Compiler Setup Download Images Multicore Extra Options Plugins
Assembler
Output Converter Driver 1Runto
Custom Buid ik Trace ~ [main
Build Actions
Simulator
Linker CADI
Chsis DF
Smulator GDB Server
cApt et
CMSLS DAP Tl Stellaris
GDB Server Mu-Link
Ijet PE micra
) ST-LINK
JHink/3-Tr
T :‘:" race Third-Party Driver
ars TI MSP-FET
Hu-Link TI XDS [debugger'Cypress'PSoCE\CYECE | o
PE micro
ST-LINK
Third-Party Driver
TI MSP-FET
TIXDS
Cancel

Open the Options dialog and select the Debugger item under Category.

3. Select the J-Link/J-Trace item under Category, and under the Connection tab, switch the interface to

SWD:

Options for node "mtb-example- psoc6-capsense- buttons-slider-freertos"

Categaory:

Factory Settings

General Options

Static Analysis
Runtime Chedding
C/C-++ Compiler Setup Connection Breakpaints
Assembler Communication
Output Converter (® USB:
Custom Build
Build Actions QICPAP: IP address
Linker aaa bbb.coc.ddd
Debugger

Simulator Interface JTAG scan chain
CADI
CMSIS DAP Oursa
GDB Server @S
Ijet
TAG
TI Stellaris
Nu-Link [Log commuriication
FEmicr SPROJ_DIRS\cspycomm log
STLINK

Third-Party Driver
TIMSP-FET
TIXDS

Device 0 ~

JTAG scan chain with muttiple targets

Scan chain contains non-Am devices

Cancel

Note:

Factory Settings

Setup Connmection Breakpoints
Reset

Core ~

JTAG/SWD speed Clock setup

O Autg
CPUdooc | |wh:

® Fixed kHz SWO dlock: [Aute
o [0 e

1000

For PSoC™ 64 "Secure Boot" MCU, you must specify a special type of reset, as follows:

4. Connecta J-Link debug probe to the 10-pin adapter (needs to be soldered on the prototyping kits), and

start debugging.

User Guide 68 of 84

002-29893 Rev. *N
2022-04-07

ModusToolbox™ user guide (iﬁﬂ eon

Using applications with third-party tools

User Guide 69 of 84 002-29893 Rev. *N
2022-04-07

ModusToolbox™ user guide ‘ iﬁneon

Using applications with third-party tools

6.2.4 Export to Keil pVision 5 (Windows only)

This section describes how to export ModusToolbox™ application to Keil pVision and debug it with CMSIS-DAP
or J-Link.

6.2.4.1 Prerequisites

e ModusToolbox™ 2.4 software and application

e Python3.7isinstalled in the tools_2.4 directory, and the make build system has been configured to use it.
You don't need to do anything if you use the modus-shell/Cygwin.bat file to run command line tools.

However, if you plan to use your own version of Cygwin or some other type of bash, you will need to ensure
your system is configured correctly to use Python 3.7. Use the CY PYTHON PATH as appropriate.

e Keil pVision version 5.28 or later
e PSoC™6 Kit (for example, CYSCPROTO0-062-4343W) with KitProg3 Firmware
e For J-Link debugging, download and install J-Link software:

https://www.segger.com/downloads/jlink/JLink Windows.exe

6.2.4.2 Process example
1. Create a ModusToolbox™ application.
a. Ifyou use the Project Creator tool, choose "ARM MDK" from the Target IDE pull down menu.

b. If you use the command line, open an appropriate shell program (see CLI Set-up Instructions), navigate
to the application directory, and Run the following command:

make uvision5 TOOLCHAIN=ARM

Note: This sets the TOOLCHAIN to ARM in the Keil uVision configuration files but not in the
ModusToolbox™ application’s Makefile. Therefore, builds inside Keil uVision will use the ARM
toolchain while builds from the ModusToolbox™ environment will continue to use the toolchain
that was previously specified in the Makefile. You can edit the Makefile’s TOOLCHAIN variable if
you also want ModusToolbox™ builds to use the ARM toolchain.

Note: Check the output log for instructions and information about various flags.

This generates the following files in the application directory:

o mtb-example-psoc6-hello-world.cpdsc

o mtb-example-psoc6-hello-world.cprj

o mtb-example-psoc6-hello-world.gpdsc

The cpdsc file extension should have the association enabled to open it in Keil pVision.

User Guide 70 of 84 002-29893 Rev. *N
2022-04-07

https://www.segger.com/downloads/jlink/JLink_Windows.exe

o _.
ModusToolbox™ user guide |nf| neon

Using applications with third-party tools

2. Double-click the mtb-example-psoc6-hello-world file (either *.cpdsc or *.cprj, depending on version). This
launches the Keil pVision IDE. The first time you do this, the following dialog displays:

Missing Required Packs

4% Mot installed required packs for Project
|) ‘mtb-example-psocé-hello-world':

Cypress.PSoCe_DFP.[

Do you want to install them?

3. Click Yes to install the device pack. You only need to do this once.

4. Follow the steps in the Pack Installer to properly install the device pack.

Pack Unzip: Cypress P5oC6_DFP 1.0.0 X

License Agreement

Please read the fallowing license agreement carefully.

To continue with SETUP, you must accept the terms of the Licenze Agreement. To accept the
agreement, click the check box below.

CYPRESS END USER LICEMSE AGREEMENT

PLEASE READ THIS END USER LICENSE AGREEMENT [“&greement”') CAREFULLY BEFORE
DOWMLOADING, INSTALLING, COPYIMG, OR USING THIS SOFTWARE AND

ACCOMPANYING DOCUMENTATION. BY DOWNLOADING, INSTALLING, COFYING OR

USING THE SOFTwARE, vOU ARE AGREEING TO BE BOUND BY THIS AGREEMENT. IF

wOU DO WNOT AGREE TO ALL OF THE TERMS OF THIS AGREEMEMNT, PROMPTLY RETURN
AND DO WOT USE THE SOFTWARE. IFv0U HAVE PURCHASED THIS LICENSE TO THE
SOFTWARE, vOUR RIGHT TO RETURN THE SOFT'WARE EXPIRES 30 DaY'S AFTERYOUR o,

FLIAE LA ARIP AREL IS ARIS TO THE ARSIk AL PRE A e Em

[| agree to atéhe termz of the preceding License Agreement

| Cancel |

uVision

[: | Software Packs folder has been modified.
L 4 Reload Packs?

Note: In some cases, you may see the following error message:
SSL caching disabled in Windows Internet settings. Switched to offline mode.

See this link for how to solve this problem:
https://developer.arm.com/documentation/ka002253/latest

When complete, close the Pack Installer and close the Keil uVision IDE. Then double-click the .cpdsc/.cprj file
again and the application will be created for you in the IDE.

User Guide 71 0f 84 002-29893 Rev. *N

2022-04-07

https://developer.arm.com/documentation/ka002253/latest

ModusToolbox™ user guide iﬁn eon

Using applications with third-party tools

5. Right-click on the mtb-example-psoc6-hello-world directory in the pVision Project view, and select Options
for Target '<application-name>' ...

K C\Users\wmed\mtb-example-psach-hello-worldimtb-example-psoct-hello-werld.uvprojx - pVision

File Edit View Project Flash Debug Peripherals Tools SVC5 Window Help

NS @ % @9 o |mommm|EEE G S

=4 Project: mtb-example-ps
%% mtb-example-pso

EIE Source ﬁ Options for Target "mtb-example-psocs-hello-world'...
[0 main.c Add Group...
@ TARGET.CYECP &4 Manage Project ltems..,
@ % capsense ¥ Rebuild all target files
@4 core-lib .
EJ--’ psoctemp Build Target F7
EJ--‘ psocthal Show Include File Dependencies
@ psoctpdl
& retarget-ic

6. Onthe dialog, select the C/C++ (AC6) tab.

e Check that the Language C version was automatically set to c99.
e Select "AC5-like warnings" in the Warnings drop-down list.

o Select "-Os balanced" in the Optimization drop-down list.

Options for Target 'mtb-example-psoct-hello-world X
Device I Target I Cutput I Listingl User C/C++(ACE) |ﬂ5rn | Linker I Debug I Utili‘tiesl
— Preprocessor Symbols
Define: I
Undefine: I
— Language / Code Generation
[~ Execute-only Code Wamings: | ACSHike Wamings ;I Language C: Icﬂﬁ vI
L <unspecried:>
Eptlmmahon: I-Os balanced ;I I [~ TumW Non'iu'pamihgs Language C++: ICHBE vl
[~ Link-Time Optimization [|Al Wamings ¥ Short enums/wehar
ACHike Wamings
[~ Spli Load and Store Muttiple [~ [MISRA Compatible pendent [~ use RTTI
[¥ One ELF Section per Function [~ Read-Write Position Independent |~ Mo Auto Includes
Include | \mth I Ehello-warld; i
== I -=xample-peoc o-wo ibs J
Misc I
Controls
Compiler |4c -std=c99 -target=amm-armm-none-eabi -mcpu=cortex-m4 mipu=fpv4-sp-d16 -miloat-abi=hard < -~
cortrol |ttt {unsigned-char fshort-enums fshort-wehar
string !
QK I Cancel Defaults Help
User Guide 72 of 84 002-29893 Rev. *N

2022-04-07

ModusToolbox™ user guide

Infineon

Using applications with third-party tools

7. Select the Debug tab, and select KitProg3 CMSIS-DAP as an active debug adapter:

KA Options for Target 'mtb-example-psoct-hello-world' X

Device] Target] Output] Listing] User] CiCs= {.F\.C'E}] Asm] Linker Debug] Litilities]

" Use Simulator with restrictions

[~ Limit Speed to Real-Time

Settings

* sge: |CMSIS—DAP Debugger

ﬂ Settings |
A

J-LINK / J-TRACE Cortex
. |Models Cortex-M Debugger
Inttializatid ST-Link Debugger

’— MNULink Debugger
Pemicro Debugger

[V Load Application at Startup W Load

Intialization File:

¥ Run to main()

o] ea |

b main{)

N

Stellaris ICDI
Restore | . bs LIDA Debuager

[V BrqAltera Blaster Cortex Debugger
Tl XDS Debuager

Restore Debug Session Settings
[V Breakpoints [V Toolbox

[+ Watch Windows & Peformance Analyzer

W Memory Display [V System Viewer

v W

T WWINaows

[Memory Display

¥ System Viewer

[Wam if outdated Executable is loaded

CPU DLL: Parameter: Driver DLL: Parameter:
|SAHMCM3.DLL |-F~:EMAP -MPU |SAF~:MCM3.DLL |-MPU
Dialog DLL: Parameter: Dialog DLL: Parameter:
|DCM.DLL |1:cr\-14 |TCM.DLL |-pCM4

[Wam if outdated Executable is loaded

Manage Component Viewer Description Files ... |

o]

Cancel | Defaults |

Help

8. Click OKto close the Options dialog.

9. Select Project > Build target.

Build Output 7@

compiling CY IETarget io.C... A

linking... -

.\1ibs\TARGET CYSCPROTO-062-4343W\CCMPONENT_CM4\TOOLCHAIN_ARM\cyScéxxa_cmé_dual.sct (144): warning: Lé329W: Pattern *(.cy_ramfunc) only matches removed unused sections.

. \1ibs\TARGET CYSCPROTO-0&2-4343W\COMPONENT CM4\TOOLCHATN ARMY "cmd .sct(170): warning: L314W: No section matches pattern *(.cy_app_signature).

.\1ibs\TARGET CYSCPROTO-062-4343W\CCHPONENT_CM4\TOOLCHATN_ARM\ sct(l warning: L€314W: No section matches pattern *(.cy_em_eeprom) .

.\1ibs\TARGET CYSCPROTO-062-4343W\COMPONENT CM4\TOOLCHAIN ARM\ sctil warning: L6314W: No section matches pattern *(.cy_sflash user_data).

.\1ibs\TARGET CYSCPROTO-062-4343W\CCHPONENT_CM4\TOOLCHATN_ARM\ .sct(198) : warning: L6314W: No section matches pattern * (.cy_sflash_nar) .

.\1ibs\TARGET CYSCPROTO-062-4343W\COMPONENT CM4\TOOLCHAIN ARM\ .sct(207): warning: LE314W: No section matches pattern * (.cy_sflash public key).

.\1ibs\TARGET CYSCPROTO-062-4343W\CCHPONENT CM4\TOOLCHATN_ARM\ u .sct(216) : warning: L6314W: No section matches pattern * (.cy_toc_partl).

\1ibs\TARGET CYSCPROTO-062-4343W\COMPONENT CM4\TOOLCHAIN ARM\cyScéxxa_cmd sct(225): warning: LE314W: No section matches pattern * (.Cy_rtoc_part?).

.\1ibs\TARGET CYSCPROTO-062-4343W\CCMPONENT CM4\TOOLCHATH_ARM\ .sct(235): warning: L6314W: No section matches pattern * (.cy_xip).

.\1ibs\TARGET CYSCPROTO-062-4343W\CCMPONENT CM4\TOOLCHAIN ARM\ x .sct(245): warning: L€314W: No section matches pattern * (.cy_efuse).

.\1ibs\TARGET CYSCPROCTO-082-4343W\COMPONENT_CM4\TOOLCHAIN_ARM\cyEcExxa_cmd sct(253) : warning: L6314W: No section matches pattern * (.cymeta).

Program Size: Code=l9998 RO-data=8386 RW-data=440 ZI-data=1037896

Finished: 0 information, 11 warning and 0 error messages.

. \mth-example-psocé-hello-world build\mch-example-psocé-hello-world.axf” - 0 Error(s), 11 Warning(s).

Build Time Elapsed: 00:01:31 .
CMSIS-DAP Debugger CAP| NUM SCRL OVR R /W

To suppress the linker warnings about unused sections defined in the linker scripts, add "6314,6329" to the

Disable Warnings setting in the Project Linker Options.

10. Connect the PSoC™ 6 kit to the host PC.

11. As needed, run the fw-loader tool to make sure the board firmware is upgraded to KitProg3. See KitProg3

User Guide for details. The tool is located in this directory by default:

<user_home>/ModusToolbox/tools_2.4/fw-loader/bin/

User Guide 73 of 84

002-29893 Rev. *N
2022-04-07

https://www.infineon.com/documentation/development-kitsboards/kitprog-user-guide
https://www.infineon.com/documentation/development-kitsboards/kitprog-user-guide

ModusToolbox™ user guide iﬁﬂ eon

Using applications with third-party tools

12. Select Debug > Start/Stop Debug Session.

kA ChUsers\wmed\mtb-example-psoct-hello-worldymtb-example- psoct-hello-world.uvpraojx - pVision - O *
File Edit “iew Project Flash Debug Peripherals Toals SVCS Window Help
NBE@| $ 2B | PRRR|EEER® VR Q- e
PO BrFu | ORBREaR O-B-R-D- 8| %
Registers 1 E Disassembly LR |
Register [Vaue ||| 9x10006EDO 4770 BX ir "
Ox10006ED2 0000 MCVE rd,x0
g99: {
100: cy_rslt t result;
101:
102: /* Imitiglize the device and board peripherals =/
103: result = cybsp init();
104: o
TAr . § Mecemd it EadTad Mie e e e e memm —————S - - §
< >
(<0800...] mainc |] gutish v X
(<0800... 95 | * int -
0 1000... g | *
(x1000... 7 L R R AR AR R R AR R R R R R R R R R R R R
OxE0D... 98 int main(void)
oooor... [NV ST
(= 1000... 100 cy_rslt t result;
(x1000... 101
(e6100... 102 /* Initialize the device and board peripherals */
103 result = cybsp_init():
104
105 /* Board init failed. Stop program execution */
v| 106 1f (result != CY R5LT SUCCESS)
——n-d oo 107 - ¥ bt
=] Project | = Registers < >
Command o E call stack + Locals B3
Load "C:\\Users\\vmed\\mtb-exanple-psocé-hello-wo: Mame Location/Value Type
=% main 0x10006ED4 intf) =~
a o @ result <not in scope> auto—uin'v
> l | _>I_I
ASS5IGN BreakDisable BreakEnable BreakKill BreakListl QECallstack+Locals Memory 1
CMSIS-DAP Debugger
User Guide 74 of 84 002-29893 Rev. *N

2022-04-07

ModusToolbox™ user guide iﬁﬂ eon

Using applications with third-party tools

You can view the system and peripheral registers in the SVD view.

Ch\Users\vmed\mtb-example-psoch-hello-worldmtb-example-psoc-hello-world.uvprojx - pVision - O *
File Edit View Project Flash Debug | Peripherals Tools SVCS Window Help
IWEH@|.I—J@:|"? | System Viewer M BAckup) vay&|@-|. @ﬁ'||E|'|‘K
= ' v | CPUss]
Ros“-r|®| ™ "{}| d>| B Core Peripherals >|_|] - Ev| i .
CsDo
Registers 2 El Disassembly [a B crpuss O x |
0x10006EDC 4770 BX DMAC - e
0x10006ED2 0000 MOWVS Dw 4
og: | EFUSE Property Value
100: cy_rslt_t resi = IDENTITY e DDDDOFO3 ﬂ
101: FAULT
: p T
102: /* Imitialize FLASHC board peripherals *;
103: result = cybs] GRIO N5 |7
104: v PC 0x00
s Fe o iz HSIOM N G & el
< > MS 0xOF
[YE = CM4_STATUS 000000010
_ ; x
L] mainc | |] gLutils.h IPC M SLEEPING r
i L LCDO 2 SLEEPDEEP]
a7 R R R R R R R R i R R R R R R R R "
98 int main(void) LPCOMP PAWR_DONE ¥l
: LNl Pass £ CM4_CLOCK CTL
) (xDBOFF3 100 cy rslt t res FAST_INT_DIV 000
) 0100023 101 - FOMO
102 # Initiali i b d ipt 1s *
ni ia :LZE. oard peripherals CMA_INTD_STATUS
103 result = cybs] PROFILE
e 104 CM4_INT1_STATUS
ini EROT uti Fe— |
105 /* Board init rogram execution */ L CRAA KT CTATIIE
106 if (result != SAR 5) FAST_INT_DIV ~
Thread -l 107 { SCB » [Bits 15..8] RW (@ 0x40200008) Specifies the
o2 B — 1nn v neawDT ¥ || fast clock divider (from the high frequency
&l Project | = Registers < SDHC 4 > clock 'clk_hf' to the peripheral clock w
Command SMARTIO For)r1 i |
Load "C:\\Users‘\‘\vmed\\mtb-example-psocé-hello-wor SMIFD iess‘l -
. |
SRSS
TCPWM 3
<
USBFSO
>
ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet v
CMSIS-DAP Debugger t1: 0.00091320 sec L]

6.2.4.3 To use KitProg3/MiniProg4, CMSIS-DAP, and ULink2 debuggers

1. Select the Device tab in the Options for Target dialog and check that M4 core is selected:

Options for Target 'mtb-example-psoct-gpio-interrupt’ X

Device |Targe1| Outputl Listingl User I C/Cs+ {.ﬂ.CG}I Asm I Linkerl Debugl Util'rtiesl

ISoﬂware Packs LI
Vendor: Cypress Software Pack
Device: CYBCR247BZI-D54 Cortex-M4 Pack: |er955-P5°CG_DFP-1-D-D
Toolset: ARM URL: hitp-//www keeil com/pack
Search: I
4 CYSCE247BZI-D54 :I PSoC 62 (Perfformance Line): Dual-core Cortex-M4./M0+ MCL series
. with programmable digital and analog peripherals, advanced
€3 _CvaC6247821-D54: Cortex-Mop graphics, CapSense, crypto and secure boot security.

E| CYBCE247BZ1-D54:Cortex-M4
% CVBCE247FDI-D02
i§ CYBCH247FDI-D32
[CY8C6247FDI-D52 J
[CVBCE247FTI-D52
% CYBCE247WI-D54
[CVBCE248A71-52D14

i e
0K I Cancel Defaults Help

User Guide 75 of 84 002-29893 Rev. *N
2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

2. Select the Debug tab and click "Settings" to display the dialog Target Driver Setup:

KA Options for Target 'mth-example-psoct-gpia-interrupt’

Device] Target] Qutput] Listing] User] C/C++ {ACG}] Asm] Linker Debug] Litilities]

X

™ Limit Speed to Real-Time

Iv¥ Load Application at Startup ¥ Run to main() Iv¥ Load Application at Startup ¥ Run to main()
Initialization File: Initialization File:

Restore Debug Session Settings Restore Debug Session Settings

e] ol ea |

|¥ Breakpoints ¥ Toolbox [v Breakpoirts ¥ Toolbox
¥ Watch Windows & Performance Analyzer W Watch Windows
Iv¥ Memory Display [v¥ System Viewer v Memory Display [v¥ System Viewer
CPUDLL: Parameter: Driver DLL: Parameter:
|SARMCM3.DLL | -REMAF -MPU |SARMCM3.DLL | -MPU
Dialog DLL: Parameter: Dialog DLL: Parameter:
|pcm.DLL [pCMe |TCM.DLL [pCMe

™ Wam if outdated Executable is loaded ™ Wam if outdated Executable is loaded

Manage Component Viewer Description Files ... |

(" Use Simulstor with restrictions Settings @ Use: |CMSIS-DAP Debugger jl Settings I

oK | Cancel | Defauts | Help

3. Onthe Target Driver Setup dialog, on the Debug tab, select the following:

e setPortto"SW"
o setMaxClockto "1l MHz"
e setConnect to "Normal"
e setReset:
e ForPSoC™6,to"VECTRESET"
e ForPSoC™4 and PMG1, to "SYSRESETREQ"

e enable Reset after Connect option

Debug ITIEICE] Flash Download] Pack]

CMSIS-DAP - JTAG/SW Adapter SW Device

|C‘,'press MiniProg4 [CMSIS-D:j IDCODE Device Name
SWDIO | 3 x6BAD2477 ARM CoreSight SW-DP

Serial No: [0516138B022374

Firmware Version: [2.0.0
o pafon] || €
-
M Clockc [iHe__ -] o] [o]
02
Debug
Connect & Reset Options Cache Options Download Options

Connect: §Nomal j Reset:IEECTRESET - I Iv¥ Cache Code I~ Verfy Code Download

s LT [¥ Cache Memory | | I~ Download to Flash

oK | Cancel Help

User Guide 76 of 84

Infineon

002-29893 Rev. *N
2022-04-07

o _.
ModusToolbox™ user guide |nf| neon

Using applications with third-party tools

4. Select the Flash Download tab and select "Reset and Run" option after download, if needed:

Debug] Trace Fash Download l Pack]

Download Function RAM for Algorithm
Lopn ¢ EreseFulChip ¥ Program

_‘Fi (% Erase Sectors [Veri Start: | (08026400 Size: | 00002000

Programming Algorithm

Description | Device Size | Device Type | Address Range |
CY8Choo_SFLASH_TOC2 1k On-chip Flash 16007C00H - 16007FFFH
CY8Choo_SFLASH_PKEY kY On-chip Flash 16005A00H - 160065FFH
CY8Choo_SFLASH_USER pild On-chip Flash 16000800H - 16000FFFH
CY8Choor_WFLASH 32k On-chip Flash 14000000H - 14007FFFH
CYBCExT_sect256KB ™ On-chip Flash 10000000H - 100FFFFFH
Start: | Size: |
Add | |

oK | cancel | Help

5. Select the Pack tab and check if "Cypress.PSoC6_DFP" is enabled:

CMSIS-DAP Cortex-M Target Driver Setup *

Diebug] Trace] Flash Download ~Pack

Debug Description
Pack: Cypress.PSoCE&_DFP.1.0.0

¥ Enable |

™ Log Sequences: |D:"-_C;.-P"-tmp"-ne;\"‘-.KeiIiject"-.CYECKIT-CE2-";'-;'IFI-BT‘-.ErvT'-mtbe;f.ample-psocEgpiointer

| [z |

0K | Cancel Help

6.2.4.4 To use J-Link debugger

1. Make sure you have J-Link software version 6.62 or newer.

User Guide 77 of 84 002-29893 Rev. *N
2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

Infineon

2. Select the Debug tab in the Options for Target dialog, select J-LINK / J-TRACE Cortex as debug adapter, and

click "Settings":

" Use Simulator with restrictions Settings

Device I Target I Output I Listing I User I C/Ce {.»‘\CG}I Asm
| | @ Use: JU-LINK 7 JTRACE Cortex LI Settings I

Options for Target 'mth-example-psocB-gpio-interrupt’

| Linker Debug | uities |

[™ Limit Speed to Real-Time

V¥ Load Application at Startup V¥ Run to main()
Initialization File:

Restore Debug Session Settings
[V Breakpoints W Toolbox
¥ Watch Windows & Performance Anatyzer
V¥ Memary Display W System Viewer

| =)| |

V¥ Load Application at Startup ¥ Run to main()
Initialization File:

Restore Debug Session Settings
v Breakpoints
¥ Watch Windows
V¥ Memoary Display [V System Viewer

¥ Toolbax

[~ Wam ff outdated Executable is loaded

CPUDLL: Parameter: Driver DLL: Parameter:
ISﬁF{MCME‘..DLL I—F{EMAP MPU ISﬁF{MCME‘..DLL I-I‘u'IPU
Diglog DLL: Parameter: Diglog DLL: Parameter:
IDCI'u'I.DLL I-pCI'u'I-i ITCI‘u'I.DLL I-pCI'u'I-i

Manage Component Viewer Description Files ...

[~ Wam ff outdated Executable is loaded

ok | cancel |

Defauts | Help

Click OKin the Device selection message box:

| MY Cortex JLink/ITrace Target Driver Setup

Debug |Trace I Flash Downloadl

JTAG Device Chain

Move

(ﬁ! El=

a
o
o

—dJ-Link / J-Trace Adapter
SN: || -]
Device: e
HW dil: I
— TDI
FW
A J-Link V6.62 J-Link V6.62 Device Selection
The selected device "CYBCE247EZI-D54: CORTEX-M4" is unknown to this version of the J-Link software.
@R Plesse make surs that at least the core J-Link shall connect to, is sslected.
Ll Proper device selection is required to use the J-Link internal flash loaders
B for flash download or unlimited flash brezkpoints.
For some devices which require a special handling, selection of the correct device is important.

4. Select appropriate target in Wizard:

H SEGGER J-Link V6.62b - Target device settings X
Selected Device: CY8CExx7_CM4 Lite Endian ~ | (Core #0 -
Manufacturer Device Core NumCores Flash Size RAM Size A
Cypress CYBCEab_CM4 Cortex-M4 1 512KB + 32 K.. 32KB
Cypress CYBCHxb_CM4_sect236KB Cortex-M4 1 512KB + 32 K.. 32KB
Cypress CY8CHaT_CMOp Cortex-M0 1 1ME +32KB.. 32KB
Cypress CY8CHaT_CMOp_sect2 56KB Cortex-M0 1 1ME +32KB... 32KB
Cypress CYBCET_CMOp_sect236KB_tm Cortex-MO ‘I 1MB+32KB.. 32KB
Cypress CYBCHeT_CMOp_tm Cortex MO 1MB+ 32 KB.. 32KB
CV8ChaT CM4 _ 1MB + 32 KB..
Cypress CY3CEaT_CM4_sect236KB Cortex M4 1ME + 32 KB... 32 KB
Cypress CYBCEd_ CMOp Cortex-MD ‘I 2MB + 32 KB.. 32KB
Cypress CYBCEd_CMOp_sect256KB Cortex-MD 1 2MB + 32 KB.. 32KB
Cypress CY8CHodt_CMOp_sect256KB_t.. Cortex-MO 1 2MB + 32KB.. 32KB
Cypress CY8CHad_CMOp_tm Cortex-M0 1 2MB + 32KB.. 32KB
Cypress CYBCHaA_CM4 Cortex-M4 1 2MB +32KB.. 32KB
Cypress CYBCHoA_CM4_sect256KB Cortex-M4 1 2MB +32KB.. 32KB
Cypress CYBL1 oo Cortex-M0 1 128 KB 16 KB v
= e an mee 0 wan . e A - J
Cancel
User Guide 780f 84

002-29893 Rev. *N

2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

5. Goto Debugtab in Target Driver Setup dialog and select:

e setPortto"SW"

e setMaxClockto "1 MHz"
e setConnectto "Normal"
e setResetto "Normal"

e enable Reset after Connect option

Cortex JLink/JTrace Target Driver Setup

Debug |T|E|ce I Flash Downloadl
—d-Link / J-Trace Adapter————— ~ SW Device

SN: IED‘ID?MZ vl IDCODE | Device Name |

Device: ILink SWD | ® x6BAD2477 ARM CoreSight SW-DP

HW : V1010 di: I V6.62d

FW: |J-Link V10 compiled Jan 7 20

Move

Down

HE

10 CODE: I

Por =z Cloc)e % Automatic Detection
€ Manual Configuration Device Name: l—
Auto Clic Add | Delete | Update | IR len: I
Connect & Heset Options Cache Options Download Options
Connect Reset:fNomal <[l | [Cache Cods I~ Verfy Code Dowrlload
Eﬂesa — ¥ Cache Memary I Download to Aash
 Interface TCP/IP Misc
& USB TCP/IP HEREIEEEITES .
IP-Address Pot uto: @) | _Autodetect ik Irfo |
Sean | 27 .0 .0 .1 0
| 2 | Prg | JLink Crd |
State: ready

[ok | camcel | oo

Infineon

6. Select the Flash Download tab in Target Driver Setup dialog and select "Reset and Run" option after

download if needed:

Cortex JLink/JTrace Target Driver Setup

Debug | Trace FHash Download |

— Download Function RAM for Algorithm
LORD " Erase Ful Chip ¥ Program
o v Veri Start: [B08026400 Size: (<3000
" Do not Erase v Reset and Fun
P ing Algorithm
Description | Device Size | Device Type | Address Range I
CYBCEoo_SFLASH_TOC2 1k On-chip Flash 16007C0O0H - 16007FFFH
CYBCEoo_SFLASH_PKEY * On-chip Flash 16005A00H - 160065FFH
CYBCHoo_SFLASH_USER s On-chip Flash 16000800H - 16000FFFH
CYBCHoo_WFLASH 324 On-chip Flash 14000000H - 14007FFFH
CYBCEo7_sect256KB Ll On-chip Flash 10000000H - 100FFFFFH
Start: I Size:

Add I Remove |

QK I Cancel Apply

User Guide

79 of 84

002-29893 Rev. *N
2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

6.2.4.5 Program external memory
1. Download internal flash as described above.

Notice "No Algorithm found for: 18000000H - 1800FFFFH" warning.

Infineon

2. Select the Flash Download tab in Target Driver Setup dialog and remove all programming algorithms for

On-chip Flash and add programming algorithm for External Flash SPI:

CMSIS-DAP Cortex-M Target Driver Setup

Debug | Trace Fiash Download | pack |

— Download Function RAM for Algorithm
Lopn © EreseFull Chip ¥ Program

Fi_ % FErase Sectors W Verfy
" Donot Erase |V Reset and Run

Start: I{b:ﬂEDQGdDD Size: |(2<00002000

— Programming Algorithm

CYBCEoor SFLASH_TOC2 On-chip Flash 16007C00H - 16007FFFH
CYBCHoo_SFLASH_FKEY On-chip Flash 16005A00H - 160062FFH
CY8CHoo_SFLASH_USER On-chip Flash 16000200H - 16000FFFH

CYECoo WFLASH On-chip Flash 14000000H - 14007FFFH
CYECHorT_sect256KB On-chip Flash 10000000H - 100FFFFFH

Start: |[b(1GDD?CDD Size: |k<D0D00400

o | []

Help

CMSIS-DAP Cortex-M Target Driver Setup

Debug | Trace Flash Download | Pack |

— Download Function RAM for Algorithm
LORAD " Erase Full Chip W Program

Fi_ % Frase Sectors [V Verffy
" DonotErase |V Reset and Run

Start: I{bd]HDZG-lDD Size: | (k00008000

r— Programming Algorithm

Descrntion = Address Ha

= — —
CYECHooe_SMIF 128 Ex.Flash SFI 1E000000H - FFFFFFFH

Start: |[b:1BDDDDDD Size: |(x02000000

Add | Remove |

Help

3. Download flash.

Notice warnings:

e No Algorithm found for: 10000000H - 1000182FH
e No Algorithm found for: 10002000H - 10007E5BH
e No Algorithm found for: 16007CO0H - 16007DFFH

User Guide 80 of 84

002-29893 Rev. *N
2022-04-07

ModusToolbox™ user guide

Using applications with third-party tools

6.2.4.6 Erase external memory

Infineon

1. Select the Flash Download tab in Target Driver Setup dialog and remove all programming algorithms for

On-chip Flash and add programming algorithm for External Flash SPI:

Debug I Trace Fash Download | Pack I

— Download Function RAM for Algorithm
LORD ¢~ Erase Ful Chip ¥ Progmm
_‘Fi % Erase Sectors W Verfy Start: |(x08026400 Size: |2c00008000
" Donot Emse [Resetand Run

— Programming Algerithm

Descrption Address Ha

i evice Size D nge
CY8CHoox_SMIF 128M Ext. Flash 5P| 18000000H - 1FFFFFFFH

Start: |[k1RDDDDDD Size: |(<02000000

Add | Remave |

CMSIS-DAP Cortex-M Target Driver Setup X
Debugl Trace Flash Download IF‘ack I
— Download Function RAM for Algorithm
LOAD " Erase Ful Chip [¥ Program
a_ & Erase Sectos ¥ Verfy Start: IMMDD Size: | (00008000
" Donot Erase ¥ Resetand Run
— Programming Algarithm
CYBCHox_SFLASH_TOC2 On-chip Flash 16007C00H - 16007FFFH
CYBChoo_SFLASH_PKEY On-chip Flash 16005A00H - 160065FFH
CYBChoo_SFLASH_USER On-chip Flash 16000800H - 16000FFFH
CYBChoo_WFLASH On-chip Flash 14000000H - 14007FFFH
CYBChoT7_sect256KB On-chip Flash 10000000H - 100FFFFFH
Start: [Bc16007C00 Size: | 300000400
Add | I Remove I
ok | Cancel | Help
CMSIS-DAP Cortex-M Target Driver Setup X

2. Click Flash > Erase in menu bar.

User Guide 81 of 84

002-29893 Rev. *N
2022-04-07

ModusToolbox™ user guide ‘ iﬁneon

Using applications with third-party tools

6.3 Patched flashloaders for AIROC™ CYW208xx devices

To enable support for different QSPI settings, the ModusToolbox™ QSPI Configurator patches flashloaders and
stores FLM files for them in the application directory. When exporting such applications to 3 party IDEs (for
example, Keil pVision or IAR EWARM), these patched flashloader files must be copied into the appropriate 3
party IDE directory.

1. Copy the flashloader file located in the <app-dir=\libs\<Kit-
Name=>\COMPONENT_BSP_DESIGN_MODUS\GeneratedSource directory.
e For Keil pVision, copy the CYW208xx_SMIF.FLM file.
e For IAR EWARM, copy the CYW208xx_SMIF.out file.

2. Paste the flashloader file as follows:

o For Keil pVision, paste to the C:\Users\<User-
Name=>\AppData\Local\Arm\Packs\Cypress\CYW208xx_DFP\<Version>\Flash directory.

e For IAR EWARM, paste to the C:\Program Files\IAR Systems\Embedded Workbench
9.0\arm\config\flashloader\Infineon\CYW208XX directory.

3. Also, to use the SEGGER J-Link debugger, paste the CYW208xx_SMIF.FLM file to the C:\Program
Files\SEGGER\JLink\Devices\Cypress\catlb directory.

6.4 Generating files for XMC™ Simulator tool

For the XMC1100, XMC1200, XMC1300, and XMC1400 families of devices, you can generate an archive file to
upload to the XMC™ Simulator tool (https://design.infineon.com/tinaui/designer.php) for simulation and
debugging. To do this:

Specify the CY SIMULATOR GEN AUTO=1 variable as follows:

e Editthe application Makefile to add the cY SIMULATOR GEN AUTO=1 variable, and then build the
application, or

e Add thevariable on the command line: make build CY SIMULATOR GEN AUTO=1

When the build completes, it generates an archive file (<application-name>.tar.tgz) in the <Application-

Name>\build\<Kit-Name>\Debug directory, and the build message displays the URL to the appropriate
simulator tool. For example:

= Generating simulator archive file =

The Infineon online simulator link:
https://design.infineon.com/tinaui/designer.php?path=EXAMPLESROOT$7CINFINEONS7CApPP
lications%7CIndustrial%7C&file=mcu_ XMC1200 Boot Kit MTB v2.tsc
Simulator archive file C:/Users/XYZ/mtw2.4/5699/xmc-
2/Empty XMC App/build/KIT XMC12 BOOT 001/Debug/mtb-example-xmc-empty-app.tar.tgz
successfully generated

e Ifusingthe Eclipse IDE, click the link in the Quick Panel under Tools to open the XMC™ Simulator tool in the

default web browser.

e If building with the command line, open a web browser to the URL displayed in the output message.

Upload the generated archive file to the XMC™ Simulator tool, and follow the tool's instructions for using the
tool as appropriate.

User Guide 82 of 84 002-29893 Rev. *N
2022-04-07

https://design.infineon.com/tinaui/designer.php

o _.
ModusToolbox™ user guide |nf| neon

Revision history

Revision history

Date Revision Description of change
3/24/2020 ** New document.
3/27/2020 *A Updates to screen captures and associated text.
4/1/2020 *B Fix broken links.
4/29/2020 *C Fix incorrect link.
8/28/2020 *D Updates for ModusToolbox™ 2.2.
9/23/2020 *E Corrections to Build system and Board support packages chapters.
9/29/2020 *F Added links to KBAs; updated text for cyignore.
10/2/2020 *G Added details for BTSDK v2.8 BSPs/libraries.
1/14/2021 *H Updated Manifest chapter and fixed broken links.
3/23/2021 | Updates for ModusToolbox™ 2.3.
5/24/2021 *J Updated information for creating a custom BSP.
9/27/2021 *K Updates for ModusToolbox™ 2.4.
11/29/2021 *L Merged chapter 3 (software overview) into chapter 1 (introduction).
Updated sections 6.2.3 and 6.2.4 with notes and minor details.
Added section 6.3 with information for patched flashloaders and 3" party IDEs.
2/24/2022 *M Added link to PSoC™ 4 Application Note.
4/7/2022 *N Updated various links to the Infineon website.
User Guide 830f 84 002-29893 Rev. *N

2022-04-07

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-04-07
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2022 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?

Email: erratum@infineon.com

Document reference
002-29893 Rev. *N

IMPORTANT NOTICE

The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics ("Beschaffenheitsgarantie") .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement of
intellectual property rights of any third party.

In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and standards
concerning customer’s products and any use of the
product of Infineon Technologies in customer’s
applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology.
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/

	About this document
	Table of contents
	1 Introduction
	1.1 What is ModusToolbox™ software?
	1.2 Run-time software
	1.2.1 Code examples
	1.2.2 Libraries (middleware)
	1.2.2.1 Common library types:
	1.2.2.2 AIROC™ Bluetooth® Libraries:
	1.2.2.3 BSP-specific base libraries:
	1.2.2.4 PSoC™ 6 additional libraries:

	1.2.3 BSPs
	1.2.3.1 Supported devices
	1.2.3.2 BSP releases

	1.3 Development tools
	1.3.1 Directory structure
	1.3.2 Documentation
	1.3.2.1 Release notes
	1.3.2.2 Top-level documents
	1.3.2.3 Document index page

	1.3.3 IDE support
	1.3.4 Tools
	1.3.4.1 Configurators
	1.3.4.2 Other tools
	1.3.4.3 Utilities
	1.3.4.4 Build system infrastructure
	1.3.4.5 Program and debug support

	1.4 Product versioning
	1.4.1 General philosophy
	1.4.2 Tools package versioning
	1.4.3 Multiple tools versions installed
	1.4.4 Specifying alternate tools version
	1.4.4.1 Environment variable
	1.4.4.2 Specific project Makefile

	1.4.5 Tools and configurators versioning
	1.4.5.1 Configurator messages

	1.4.6 GitHub libraries versioning
	1.4.7 Dependencies between libraries
	1.4.7.1 Git repo dependencies via .mtb files
	1.4.7.2 Regular C dependencies via #include

	1.5 Partner ecosystems

	2 Getting started
	2.1 Install and configure software
	2.1.1 GUI set-up instructions
	2.1.2 CLI set-up instructions

	2.2 Get help
	2.2.1 GUI Ddocumentation
	2.2.1.1 Eclipse IDE
	2.2.1.2 Configurator and tool guides

	2.2.2 Command line documentation
	2.2.2.1 make help
	2.2.2.2 CLI tools

	2.3 Create applications
	2.3.1 Project Creator tools
	2.3.1.1 Project Creator GUI
	2.3.1.2 project-creator-cli

	2.3.2 git clone
	2.3.3 Typical application contents
	2.3.3.1 Application directory
	2.3.3.2 mtb_shared directory

	2.4 Update BSPs and libraries
	2.4.1 Library Manager
	2.4.2 make getlibs

	2.5 Configure settings for devices, peripherals, and libraries
	2.5.1 Configurator GUI tools
	2.5.2 Configurator CLI tools

	2.6 Write application code
	2.6.1 Application layers
	2.6.1.1 HAL
	2.6.1.2 PDL
	2.6.1.3 Configurators

	2.7 Build, program, and debug
	2.7.1 Use Eclipse IDE
	2.7.2 Export to another IDE
	2.7.3 Use command line
	2.7.3.1 make build
	2.7.3.2 make program
	2.7.3.3 make debug/qdebug/attach

	3 ModusToolbox™ build system
	3.1 Overview
	3.2 Application types
	3.3 BSPs
	3.4 make getlibs
	3.4.1 repos

	3.5 Adding source files
	3.5.1 Auto-discovery
	3.5.1.1 .cyignore
	3.5.1.2 TOOLCHAIN_<NAME>
	3.5.1.3 TARGET_<NAME>
	3.5.1.4 CONFIG_<NAME>
	3.5.1.5 COMPONENT_<NAME>
	3.5.1.6 BSP makefile
	3.5.1.7 Multi-project application with imported BSP

	3.6 Pre-builds and post-builds
	3.7 Program and debug
	3.8 Available make targets
	3.8.1 General make targets
	3.8.2 IDE make targets
	3.8.3 Tools make targets
	3.8.4 Utility make targets

	3.9 Available make variables
	3.9.1 Basic configuration make variables
	3.9.2 Advanced configuration make variables
	3.9.3 BSP make variables
	3.9.4 Getlibs make variables
	3.9.5 Path make variables
	3.9.6 Miscellaneous make variables

	4 Board support packages
	4.1 Overview
	4.2 What’s in a BSP
	4.2.1 COMPONENT_BSP_DESIGN_MODUS
	4.2.2 COMPONENT
	4.2.3 deps subdirectory
	4.2.4 docs subdirectory
	4.2.5 Support files
	4.2.6 <BSP_NAME>.mk
	4.2.7 locate_recipe.mk
	4.2.8 README/RELEASE.md
	4.2.9 BTSDK-specific BSP files

	4.3 Creating your own BSP
	4.4 Modifying the BSP configuration for a single application

	5 Manifest files
	5.1 Overview
	5.2 Create your own manifest
	5.2.1 Overriding the standard super-manifest
	5.2.2 Secondary super-manifest
	5.2.3 Processing
	5.2.4 Conflicting data

	5.3 Using offline content
	5.4 Access private repositories

	6 Using applications with third-party tools
	6.1 Import to Eclipse
	6.2 Exporting to supported IDEs
	6.2.1 Overview
	6.2.2 Export to VS Code
	6.2.2.1 Prerequisites
	6.2.2.2 Process example
	6.2.2.3 To debug using KitProg3/MiniProg4
	6.2.2.4 To debug using J-Link

	6.2.3 Export IAR EWARM (Windows only)
	6.2.3.1 Prerequisites
	6.2.3.2 Process example
	6.2.3.3 To use KitProg3/MiniProg4
	6.2.3.4 To use MiniProg4 with PSoC™ 6 single core and PSoC™ 6 256K
	6.2.3.5 To use J-Link

	6.2.4 Export to Keil µVision 5 (Windows only)
	6.2.4.1 Prerequisites
	6.2.4.2 Process example
	6.2.4.3 To use KitProg3/MiniProg4, CMSIS-DAP, and ULink2 debuggers
	6.2.4.4 To use J-Link debugger
	6.2.4.5 Program external memory
	6.2.4.6 Erase external memory

	6.3 Patched flashloaders for AIROC™ CYW208xx devices
	6.4 Generating files for XMC™ Simulator tool

	Revision history

