

User guide Please read the "Important Notice" and "Warnings" at the end of this document 002-29893 Rev. *T

www.infineon.com 2024-02-19

ModusToolbox™ tools package user guide

ModusToolbox™ tools package version 3.2.0

A newer version of this document may be available on the web here.

About this document

Scope and purpose

This guide provides information and instructions for using the ModusToolbox™ tools provided by the version
3.2.0 installer and the make build system. This document contains the following chapters:

• Chapter 1 describes the various aspects of ModusToolbox™ software.

• Chapter 2 provides instructions for getting started using the ModusToolbox™ tools.

• Chapter 3 provides instructions for working with an application after it has been created.

• Chapter 4 describes the ModusToolbox™ build system.

• Chapter 5 covers different aspects of the ModusToolbox™ board support packages (BSPs).

• Chapter 6 explains the ModusToolbox™ manifest files and how to use them with BSPs, libraries, and code

examples.

• Chapter 7 provides instructions for using a ModusToolbox™ application with various third-party tools.

Document conventions

Convention Explanation

Bold Emphasizes heading levels, column headings, menus and sub-menus

Italics Denotes file names and paths.

Courier New Denotes APIs, functions, interrupt handlers, events, data types, error handlers, file/folder names,

directories, command line inputs, code snippets

File > New Indicates that a cascading sub-menu opens when you select a menu item

Abbreviations and definitions

This section provides a list of various terms and definitions used in the ModusToolbox™ ecosystem.

Term Definition

Application A ModusToolbox™ Application is required to have a Makefile that supports the

standard make targets (e.g., get_app_info, build, getlibs). There is generally one

directory that contains one or more Projects that are meant to build and work

together. The Application Makefile forwards the make targets along to the Projects

in the appropriate order.

Board (eg: EVK/DVK/kit) This is a physical collection of electronics that have been grouped together to show

of capabilities of a chip or an end product created by a customer that incorporates

Infineon silicon. Boards may be developed by Infineon, 3rd party partners such as

Future, or the customer themselves. This is a Target for which a ModusToolbox™

Application can be built.

https://www.infineon.com/ModusToolboxUserguide

User guide 2 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

About this document

Term Definition

Board Support Package (BSP) A library that you may customize, which adds support to build and boot a Target

board and related devices. This includes source code, headers, resources, linker

scripts, startup code, and they define common aliases for resources like GPIOs to

aid in portability. All ModusToolbox™ Applications require at least one BSP.

BSP Configurator A specific type of configurator that is used to configure aspects of the system that

are specific to the BSP. Since the BSP contains the base microcontroller, the Device

Configurator, as an example, would be a BSP configurator.

Chip/device This is a specific piece of silicon that Infineon sells.

Code Example This is the starting point / template for an Application. It is typically a Git repo, but it

can also be another directory.

Configurator GUI and/or CLI tools that simplify the configuration of a run-time asset (chip, board,

or middleware). There are various types of configurators, and they generally create

code or data structures that become part of the target application.

Device Configurator A BSP Configurator that is used to configure hardware on the main Target device. It

allows configuration of device GPIOs, peripherals, clocks, DMA, etc. This is generally

the starting configurator that can also be used used to open other BSP

Configurators.

Device database (device-db) Contains a set of devices that can be used by various tools for Application and BSP

creation.

Driver Low-level firmware that enables a specific hardware peripheral.

Firmware Program code that runs on a Chip as a result of a building the Application and

Programming (flash).

Hardware Abstraction Layer

(HAL)

A set of firmware Drivers that provide an interface to low-level hardware that is

consistent across most Infineon devices.

Kit See Board.

Lastest Locking A mechanism that tracks and locks versions of libraries to specific versions for a

given Application when that Application is created. Older versions of the tools

package used a file named locking-commit.log. Version 3.2 and later use a file

named assetlocks.json.

Library Configurator A specific type of Configurator that is used to configure aspects of the system that

are specific to the project, but not specific to the BSP. The Bluetooth® Configurator

that is used to configure items such as advertising settings, services and

characteristics that are part of a project is an example of a Library Configurator.

This type of configurator is generally tightly coupled to a middleware library (i.e.

Bluetooth®, etc.).

Manifests This is a set of XML files that describe the downloadable content that is available.

This includes code examples, BSPs, and middleware libraries.

Middleware A set of related firmware, distributed as a library of source code, headers, pre-

compiled code, and resources that is designed to be used by a variety of

applications.

Module A piece of silicon or PCB developed by Infineon or a 3rd party partner that contains

one or more Infineon chips that have been qualified to work together.

ModusToolbox™ packs An additional set of tools, manifests, and firmware assets that are installed as a

group through Infineon Developer Center to extend the capabilities of the basic

ModusToolbox™ tools package. There are Technology Packs that usually add some

sort of functionality and Early Access Packs that enable early access to new devices.

Early Access Packs are usually restricted to select customers.

ModusToolbox™ Setup program A stand-alone tool used to install ModusToolbox™ packages.

User guide 3 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

About this document

Term Definition

ModusToolbox™ tools package The basic set of tools, build system, and IDE support installed from a package for

Windows, macOS, and Linux.

mtb-shared directory Provides the default and added library code used for the Applications within a given

Workspace.

Peripheral Driver Library (PDL) A set of low level, device specific, firmware Drivers that provide access to hardware

peripherals

Program This term can mean different things. When you download an Application onto a

device, it is often referred to as Programming the device. In the context of a Tool,

program can refer to that Tool's executable file and that is described by the

props.json file found in that Tool's directory.

Programming/debugger probes Hardware connected to the kit/device that provides protocols to communicate

between the device and the software. These include KitProg3, MiniProg4, I-Jet, J-

Link, etc.

Project For a ModusToolbox™ single-core Application, there is only one Project and so the

terms Application and Project are combined into a single entity. A ModusToolbox™

Project contains a makefile that uses the "core-make" asset to build a set of source

files into a linked library or ELF image.

For a ModusToolbox™ multi-core-application, there are Projects for each core. So, a

Project is a sub-unit of the Application, and each project is associated with a

particular core of the targeted Board.

Note: The term "project" has slightly different meanings in the context of 3rd party

tools. It will be disambiguated where necessary (e.g., "Eclipse project").

props.json A file that contains properties for the given Tool.

Target The BSP for which a project is currently building.

Tool Any program that is installed as part of the ModusToolbox™ tools package or

through the ModusToolbox™ Setup program to provide build or configuration

functionality. Specifically a tool is a directory in the tools_x.y installation directory

or under the tools subdirectory of a ModusToolbox™ Pack and that contains a valid

props.json file. Examples of tools include:

• Dashboard

• Project Creator

• Library Manager

• BSP Assistant

• Configurators

Workspace A collection of files and directories that contain one or more Applications and a

common "mtb_shared" directory for shared libraries. These are defined differently

by different IDEs.

User guide 4 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Table of contents

Table of contents

About this document ... 1

Table of contents .. 4

1 Introduction .. 6

1.1 What is ModusToolbox™ software? .. 6
1.2 Run-time software ... 6
1.3 Tools package .. 9

1.4 Product versioning .. 15
1.5 Partner ecosystems ... 19

2 Getting started ... 20

2.1 Install and configure software .. 20

2.2 Launch Dashboard .. 21
2.3 Create application from template .. 21
2.4 Understand application structures .. 23
2.5 Build and program .. 27

3 Updating the example application .. 29

3.1 Update libraries ... 29
3.2 Create/edit BSPs ... 30

3.3 Configure settings for devices, peripherals, and libraries ... 31

3.4 Write application code .. 32

3.5 Debug the application ... 34

4 ModusToolbox™ build system ... 35

4.1 Overview .. 35
4.2 make help .. 36

4.3 make getlibs .. 36

4.4 BSPs ... 37

4.5 Environment variables .. 37
4.6 Adding source files .. 37
4.7 Pre-builds and post-builds.. 39

4.8 Available make targets .. 40
4.9 Available make variables .. 42

5 Board support packages... 48

5.1 Overview .. 48
5.2 What's in a BSP .. 48

5.3 Creating your own BSP ... 50

6 Manifest files .. 51

6.1 Overview .. 51
6.2 Create your own manifest ... 52
6.3 Local content storage ... 53

User guide 5 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Table of contents

7 Using applications with third-party tools ... 54

7.1 Version Control and sharing applications .. 54
7.2 Using supported IDEs .. 55
7.3 Multi-core debugging .. 56
7.4 Generating files for XMC™ Simulator tool ... 57

Revision history ... 58

User guide 6 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Introduction

1 Introduction

This chapter provides an overview of the ModusToolbox™ software environment, which provides support for
many types of devices and ecosystems.

1.1 What is ModusToolbox™ software?

ModusToolbox™ software is a modern, extensible development environment supporting a wide range of
Infineon microcontroller devices. It provides a flexible set of tools and a diverse, high-quality collection of

application-focused software. These include configuration tools, low-level drivers, libraries, and operating
system support, most of which are compatible with Linux-, macOS-, and Windows-hosted environments.

The following diagram shows a very high-level view of what is available as part of ModusToolbox™ software.

This is not a comprehensive list. It merely conveys the idea that there are multiple resources available to you.

ModusToolbox™ software does not include proprietary tools or custom build environments. This means you

choose your compiler, your IDE, your RTOS, and your ecosystem without compromising usability or access to
our industry-leading CAPSENSE™, AIROC™ Wi-Fi and Bluetooth®, security, and various other features.

Another important aspect of the ModusToolbox™ software is that each product is versioned. This ensures that
each product can be updated on an ongoing basis, but it also allows you to lock down specific versions of the
tools for your specific environment. See Product versioning for more details.

1.2 Run-time software

ModusToolbox™ tools also include an extensive collection of GitHub-hosted repos comprising Code Examples,
BSPs, plus middleware and applications support. We release run-time software on a quarterly "train model"
schedule, and access to new or updated libraries typically does not require you to update your ModusToolbox™

installation.

New projects start with one of our many Code example templates that showcase everything from simple
peripheral demonstrations to complete application solutions. Every Infineon kit is backed by a comprehensive
BSP implementation that simplifies the software interface to the board, enables applications to be re-targeted

to new hardware in no time, and can be easily extended to support your custom hardware without the usual
porting and integration hassle.

https://github.com/Infineon
https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software

User guide 7 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Introduction

The extensive middleware collection includes an ever-growing set of sensor interfaces, display support, and
connectivity-focused libraries. The ModusToolbox™ installer also conveniently bundles packages of all the

necessary run-time components you need to leverage the key Infineon technology focus areas. Refer to

https://github.com/Infineon/modustoolbox-software#libraries for more details.

1.2.1 Code examples

All current ModusToolbox™ examples can be found through the GitHub code example page. There you will find
links to examples for the Bluetooth® SDK, PSoC™ 6 MCU, PSoC™ 4 device, among others. For most code

examples, you can use the Project Creator tool to create an application and use it directly with ModusToolbox™
tools. For some examples, you will need to follow the directions in the code example repository to instantiate
the example. Instructions vary based on the nature of the application and the targeted ecosystem.

In the ModusToolbox™ build infrastructure, any example application that requires a library downloads that
library automatically.

You can control the versions of the libraries being downloaded and also their location on disk, and whether
they are shared or local to the application. Refer to the Library Manager user guide for more details.

1.2.2 Libraries (middleware)

In addition to the code examples, there are many other parts of ModusToolbox™ that are provided as libraries.
These libraries are essential for taking full advantage of the various features of the various devices. When you
create a ModusToolbox™ application, the system downloads all the libraries your application needs. See

ModusToolbox™ build system chapter to understand how all this works.

All current ModusToolbox™ libraries can be found through the GitHub ModusToolbox™ software page. A

ModusToolbox™ application can use different libraries based on the Active BSP. In general, there are several
categories of libraries. Each library is delivered in its own repository, complete with documentation.

1.2.2.1 Common library types:

Most BSPs have some form of the following types of libraries:

• Abstraction Layers – This is usually the RTOS Abstraction Layer.

• Base Libraries – These are core libraries, such as core-lib and core-make.

• Board Utilities – These are board-specific utilities, such as display support or BTSpy.

• MCU Middleware – These include MCU-specific libraries such as freeRTOS or Clib support.

1.2.2.2 AIROC™ Bluetooth® Libraries:

For the AIROC™ Bluetooth® BSPs, there specific libraries that do not apply to any other BSPs, including:

• BTSDK Chip Libraries

• BTSDK Core Support

• BTSDK Shared Source Libraries

• BTSDK Utilities and Host/Peer Apps

https://github.com/Infineon/modustoolbox-software#libraries
https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software
https://www.infineon.com/ModusToolboxLibraryManager
https://github.com/Infineon/modustoolbox-software#libraries

User guide 8 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Introduction

1.2.2.3 BSP-specific base libraries:

BSP-specific libraries include mtb-hal, mtb-pdl, and recipe-make. Some of these are identified as device-
specific using the following categories:

• cat1/cat1a = PSoC™ 6 MCUs (mtb-hal-cat1, recipe-make-cat1a, etc.)

• cat2 = PSoC™ 4 devices and XMC ™ Industrial MCUs (mtb-hal-cat2, mtb-pdl-cat2)

• cat3 = XMC™ Industrial MCUs (recipe-make-cat3)

• cat4 = AIROC™ CYW43907 and CYW54907 (mtb-hal-cat4)

1.2.2.4 Device database (device-db)

The device-db consists of a set of devices, known as marketing part numbers (MPNs), distributed in a set of
hierarchal directories. Each MPN contains a base view describing the basic characteristics of the device and

additional views as defined by applications that use the device-db.

In ModusToolbox™ version 3.2 and later, the most current version of device-db is included in new applications,
and the device-db version is locked to contain only those MPNs available at that time. If at a later date you want

to update the MPN to a newer device not available in the device-db, you will have to update it using the Library
Manager.

The device-db is dependent on the application's PDL. In some cases when you need to update the device-db,

you may also need to update the PDL. We recommend updating the PDL version as minimally as possible
required by the device-db, because the PDL may contain many more changes than your application requires.

Refer to the device-db README.md and RELEASE.md file for details.

1.2.3 BSPs

The BSP is a central feature of ModusToolbox™ software. The BSP specifies several critical items for the
application, including:

• hardware configuration files for the device (for example, design.modus)

• startup code and linker files for the device

• other libraries that are required to support a kit

BSPs are aligned with our development/evaluation kits; they provide files for basic device functionality. A BSP
typically has a design.modus file that configures clocks and other board-specific capabilities. That file is used by

the ModusToolbox™ configurators. A BSP also includes the required device support code for the device on the
board. You can modify the configuration to suit your application.

1.2.3.1 Supported devices

ModusToolbox™ software supports development on the following Arm Cortex-M devices.

• AIROC™ Wi-Fi and Bluetooth® chips

• PMG1 USB-C Power Delivery Microcontroller

• PSoC™ 4 Configurable Microcontroller (See AN79953: Getting Started with PSoC™ 4 for the supported

PSoC™ 4 devices.)

• PSoC™ 6 MCU

• PSoC™ 64 "Secure Boot" MCU

• XMC™ Industrial Microcontroller

https://www.infineon.com/dgdl/Infineon-AN79953_Getting_Started_with_PSoC_4-ApplicationNotes-v21_00-EN.pdf?fileId=8ac78c8c7cdc391c017d07271fd64bc1&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-files

User guide 9 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Introduction

1.2.3.2 BSP releases

We release BSPs independently of ModusToolbox™ software as a whole. This search link finds all currently
available BSPs on our GitHub site.

The search results include links to each repository, named TARGET_kitnumber. For example, you will find links

to repositories like TARGET_CY8CPROTO-062-4343W. Each repository provides links to relevant
documentation. The following links use this BSP as an example. Each BSP has its own documentation. The

information provided varies, but typically includes one or more of:

• an API reference for the BSP

• the BSP overview

• a link to the associated kit page with kit-specific documentation

A BSP is specific to a board and the device on that board. For custom development, you can create or modify a
BSP for your device.

1.3 Tools package

The ModusToolbox™ tools package provides you with all the desktop products needed to build sophisticated,
low-power embedded, connected and IoT applications. The tools enable you to create new applications

(Project Creator), add or update software components (Library Manager), set up peripherals and middleware
(Configurators), program and debug (OpenOCD and Device Firmware Updater), and compile (GNU C compiler).

Infineon Technologies understands that you want to pick and choose the tools and products to use, merge

them into your own flows, and develop applications in ways we cannot predict. That's why ModusToolbox™

software is not a monolithic, proprietary software tool that dictates the use of any particular IDE.

The ModusToolbox™ tools package installer provides required and optional core resources for any application.

This section provides an overview of the available resources:

• Directory structure

• Tools

The installer does not include code examples or libraries, but it does provide the tools to access them.

1.3.1 Directory structure

Refer to the ModusToolbox™ tools package installation guide for information about installing ModusToolbox™
software. Once it is installed, the various ModusToolbox™ top-level directories are organized as follows:

Note: This image shows ModusToolbox™ version 3.2 installed. Your installation may include more than
one ModusToolbox™ version. Refer to the Product versioning section for more details.

https://github.com/Infineon?q=TARGET_
https://github.com/Infineon/TARGET_CY8CPROTO-062-4343W
https://www.infineon.com/modustoolbox
http://www.infineon.com/ModusToolboxInstallGuide

User guide 10 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Introduction

The ModusToolbox directory contains the following subdirectories for version 3.2:

1.3.1.1 docs_3.2

This is the top-level documentation directory. It contains various top-level documents and the

doc_landing.html file with links to documents provided as part of ModusToolbox™ software. This file is also
available from the Dashboard.

1.3.1.2 ide_3.2

For convenience, the tools package installation includes the Eclipse IDE for ModusToolbox™. However, we fully

support the following IDEs and their corresponding compiler technology, so you are free to develop the way

you wish:

• Microsoft Visual Studio Code (VS Code)

• IAR Embedded Workbench (EW-ARM)

• Arm Microcontroller Developers Kit (µVision)

1.3.1.3 resources_3.2.0

This directory contains a json file with details about the version of the tools package. There are also a couple
helper files for the icon and launch-tool.

User guide 11 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Introduction

1.3.1.4 tools_3.2

This contains all the various tools and scripts installed as part of ModusToolbox™ tools package. See Tools for
more information.

1.3.1.5 Packs

Packs can be installed separately from a tools package release. These packs include additional software and

tools for specific features, such as machine learning. If you install a pack, it will create a "packs" subdirectory in

the root "ModusToolbox" installation directory. Refer to the pack documentation for specific details about a
pack.

To install a pack, go to https://softwaretools.infineon.com/tools. There will be links to either install the pack
directly or download it to install manually. The pack documentation will provide additional instructions and

requirements, as needed.

1.3.2 Tool descriptions

The tools_3.2 directory includes the following configurators, tools, and utilities:

1.3.2.1 Configurators

Each configurator is a cross-platform tool that allows you to set configuration options for the corresponding

hardware peripheral or library. When you save a configuration, the tool generates the C code and/or a

configuration file used to initialize the hardware or library with the desired configuration.

Configurators are independent of each other, but they can be used together to provide flexible configuration
options. They can be used stand alone, in conjunction with other configurators, or as part of a complete

application. All of them are installed during the ModusToolbox™ installation. Each configurator provides a
separate guide, available from the configurator's Help menu.

Configurators perform tasks such as:

• Displaying a user interface for editing parameters

• Setting up connections such as pins and clocks for a peripheral

• Generating code to configure middleware

Note: Some configurators may not be useful for your application.

https://softwaretools.infineon.com/tools

User guide 12 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Introduction

Configurators store configuration data in an XML data file that provides the desired configuration. Each
configurator has a "command line" mode that can regenerate source based on the XML data file. Configurators

are divided into two types: BSP Configurators and Library Configurators.

The following diagram shows a high-level view of the configurators that could be used in a typical application.

BSP configurators

BSP configurators configure the hardware on a specific device. This can be a board provided by us, a partner, or
a board that you create that is specific to your application. Some of these configurators interact with the

design.modus file to store and communicate configuration settings between different configurators. Code
generated by a BSP Configurator is stored in a directory named GeneratedSource, which is in the same directory

as the design.modus file. This is generally located in the BSP for a given target board. Some of the BSP
configurators include:

• Device Configurator: Set up the system (platform) functions such as pins, interrupts, clocks, and DMA, as

well as the basic peripherals, including UART, Timer, etc. Refer to the Device Configurator user guide for

more details.

• CAPSENSE™ Configurator: Configure CAPSENSE™ hardware, and generate the required firmware. This

includes tasks such as mapping pins to sensors and how the sensors are scanned. Refer to the CAPSENSE™

Configurator user guide for more details.

There is also a CAPSENSE™ Tuner to adjust performance and sensitivity of CAPSENSE™ widgets on the

board connected to your computer. Refer to the CAPSENSE™ Tuner user guide for more details.

https://www.infineon.com/ModusToolboxDeviceConfig
https://www.infineon.com/ModusToolboxCapSenseConfig
https://www.infineon.com/ModusToolboxCapSenseConfig
https://www.infineon.com/ModusToolboxCapSenseTuner

User guide 13 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Introduction

• QSPI Configurator: Configure external memory and generate the required firmware. This includes defining

and configuring what external memories are being communicated with. Refer to the QSPI Configurator user

guide for more details.

• Smart I/O Configurator: Configure the Smart I/O. This includes Chip, I/O, Data Unit, and LUT signals

between port pins and the HSIOM. Refer to the Smart I/O Configurator user guide for more details.

• SegLCD Configurator: Configure LCD displays. This configuration defines a matrix Seg LCD connection and
allows you to setup the connections and easily write to the display. Refer to the SegLCD Configurator user

guide for more details.

Library configurators

Library configurators support configuring application middleware. Library configurators do not read nor

depend on the design.modus file. They generally create data structures to be consumed by software libraries.
These data structures are specific to the software library and independent of the hardware. Configuration data
is stored in a configurator-specific XML file (for example, *.cybt, *.cyusbdev, etc.). Any source code generated by
the configurator is stored in a GeneratedSource directory in the same directory as the XML file. The Library

configurators include:

• Bluetooth® Configurator: Configure Bluetooth® settings. These include options for specifying what

services and profiles to use and what features to offer by creating SDP and/or GATT databases in generated
code. This configurator supports both PSoC™ MCU and AIROC™ Bluetooth® applications. Refer to the

Bluetooth® Configurator user guide for more details.

• USB Configurator: Configure USB settings and generate the required firmware. This includes options for

defining the Device Descriptor and Settings. Refer to the USB Configurator user guide for more details.

• LIN Configurator: Configure various LIN settings, such as frames and signals, and generate the required

firmware. Refer to the LIN Configurator user guide for more details.

• EZ-PD™ Configurator: Configure the features and parameters of the PDStack middleware for PMG1 family

of devices. Refer to the EZ-PD™ Configurator user guide for more details.

1.3.2.2 Other tools

ModusToolbox™ software includes other tools that provide support for application creation, device firmware
updates, and so on. All tools are installed by the ModusToolbox™ tools package installer. With rare exception
each tool has a user guide located in the docs directory beside the tool itself. Most user guides are also available

online.

Other tools Details Documentation

dashboard Top-level starting point to create applications and BSPs. user guide

project-creator Create a new application. user guide

library-manager Add and remove libraries and BSPs used in an application; edits the Makefile. user guide

bsp-assistant Create and update BSPs. user guide

cymcuelftool Older tool used to merge CM0+ and CM4 application images into a single

executable. Typically launched from a post-build script. This tool is not used by

most applications.

user guide is in

the tool's docs

directory

dfuh-tool Communicate with a PSoC™ 6 MCU that has already been programmed with an

application that includes device firmware update capability. Provided as a GUI and

a command-line tool. Depending on the ecosystem you target, there may be other

over-the-air firmware update tools available.

user guide

proxy-helper Command-line tool for configuring proxy settings. See -h help.

lcs-manager-cli Command-line tool to create local content to work without Internet. user guide

https://www.infineon.com/ModusToolboxQSPIConfig
https://www.infineon.com/ModusToolboxQSPIConfig
https://www.infineon.com/ModusToolboxSmartIOConfig
http://www.infineon.com/ModusToolboxSegLCDConfig
http://www.infineon.com/ModusToolboxSegLCDConfig
https://www.infineon.com/ModusToolboxBLEConfig
https://www.infineon.com/ModusToolboxUSBConfig
https://www.infineon.com/ModusToolboxLINConfig
https://www.infineon.com/ModusToolboxEZ-PDConfig
https://www.infineon.com/modustoolbox
http://www.infineon.com/ModusToolboxDashboardUserGuide
http://www.infineon.com/ModusToolboxProjectCreatorGuide
http://www.infineon.com/ModusToolboxLibraryManagerGuide
http://www.infineon.com/ModusToolboxBSPAssistant
https://www.infineon.com/ModusToolboxDFUHostTool
https://www.infineon.com/lcs-manager-cli

User guide 14 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Introduction

1.3.2.3 Utilities

ModusToolbox™ software includes some additional utilities that are often necessary for application
development. In general, you use these utilities transparently.

Utility Description

GCC Supported toolchain included with the ModusToolbox™ installer.

GDB The GNU Project Debugger is installed as part of GCC.

JRE Java Runtime Environment; required by the Eclipse IDE integration layer.

SRecord Collection of tools for manipulating EPROM load files. This is used to merge multi-core application

images into a combined programmable HEX image.

1.3.2.4 Build system infrastructure

The build system infrastructure is the fundamental resource in ModusToolbox™ software. It serves three
primary purposes:

• create an application, update and clone dependencies

• create an executable

• provide debug capabilities

A Makefile defines everything required for your application, including:

• target hardware (board/BSP to use)

• source code and libraries to use for the application

• ModusToolbox™ tools version, as well as compiler toolchain to use

• compiler/assembler/linker flags to control the build

• assorted variables to define things like file and directory locations

The build system automatically discovers all .c, .h, .cpp, .s, .a, .o files in the application directory and
subdirectories, and uses them in the application. The Makefile can also discover files outside the application

directory. You can add another directory using the CY_SHAREDLIB_PATH variable. You can also explicitly list

files in the SOURCES and INCLUDES make variables.

Each library used in the application is identified by a .mtb file. This file contains the URL to a git repository, a
commit tag, and a variable for where to put the library on disk. For example, a capsense.mtb file might contain
the following line:

http://github.com/cypresssemiconductorco/capsense#latest-

v2.X#$$ASSET_REPO$$/capsense/latest-v2.X

The build system implements the make getlibs command. This command finds each .mtb file, clones the
specified repository, checks out the specified commit, and collects all the files into the specified directory.
Typically, the make getlibs command is invoked transparently when you create an application or use the
Library Manager, although you can invoke the command directly from a command line interface. See
ModusToolbox™ build system for detailed documentation on the build system infrastructure.

User guide 15 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Introduction

1.3.2.5 Program and debug support

ModusToolbox™ software supports the Open On-Chip Debugger (OpenOCD) using a GDB server, and supports
the J-Link debug probe.

You can use various IDEs to program devices and establish a debug session (see Using supported IDEs). For

programming, ModusToolbox™ Programmer is available separately. It is a cross-platform application for
programming PSoC™ 6 devices. It can program, erase, verify, and read the flash of the target device.

ModusToolbox™ Programmer and the Eclipse IDE use KitProg3 low-level communication firmware. The
firmware loader (fw-loader) is a software tool you can use to update KitProg3 firmware, if you need to do so.
The fw-loader tool is installed with the ModusToolbox™ software. The latest version of the tool is also available

separately in a GitHub repository.

Tool Description Documentation

ModusToolbox™

Programmer

ModusToolbox™ Programmer functionality is built into ModusToolbox™

Software. ModusToolbox™ is also available as a stand-alone tool.

Programming

tools page, go to

the

documentation

tab

fw-loader A simple command line tool to identify which version of KitProg is on a

kit, and easily switch back and forth between legacy KitProg2 and

current KitProg3.

readme.txt file in

the tool directory

KitProg3 This tool is managed by fw-loader, it is not available separately.

KitProg3 is a low-level communication/debug firmware. Use fw-loader

to upgrade your kit to KitProg3, if needed.

user guide

OpenOCD Our specific implementation of OpenOCD is installed with

ModusToolbox™ software.

developer's guide

1.4 Product versioning

ModusToolbox™ products include tools and firmware that can be used individually, or as a group, to develop
connected applications for our devices. We understand that you want to pick and choose the ModusToolbox™

products you use, merge them into your own flows, and develop applications in ways we cannot predict.
However, it is important to understand that every tool and library may have more than one version. The tools

package that provides the set of tools also has its own version. This section describes how ModusToolbox™
products are versioned.

1.4.1 General philosophy

ModusToolbox™ software is not a monolithic entity. Libraries and tools in the context of ModusToolbox™ are
effectively "mini-products" with their own release schedules, upstream dependencies, and downstream
dependent assets and applications. We deliver libraries via GitHub, and we deliver tools though the
ModusToolbox™ tools package and the ModusToolbox™ Setup program.

All ModusToolbox™ products developed by us follow the standard versioning scheme:

• If there are known backward compatibility breaks, the major version is incremented.

• Minor version changes may introduce new features and functionality, but are "drop-in" compatible.

• Patch version changes address minor defects. They are very low-risk (fix the essential defect without

unnecessary complexity).

http://openocd.org/doc/doxygen/html/index.html
https://www.infineon.com/products/psoc-programming-solutions
https://github.com/Infineon/Firmware-loader
https://www.infineon.com/products/psoc-programming-solutions
https://www.infineon.com/products/psoc-programming-solutions
https://www.infineon.com/documentation/development-kitsboards/kitprog-user-guide
http://openocd.org/doc/doxygen/html/index.html

User guide 16 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Introduction

Code Examples include various libraries automatically. Prior to the ModusToolbox™ 2.3 release, these libraries
were typically the latest versions. From the 2.3 release and newer, when you create a new application from a

code example, any of the included libraries specified with a "latest-style" tag are converted to the "release-

vX.Y.Z" style tag.

If you use the Library Manager to add a library to your project, the tool automatically finds and adds any

required dependent libraries. From the 2.3 release and newer using the MTB flow, these dependencies are
created using "release-vX.Y.Z" style tags. The tool also creates and updates a file named assetlocks.json in the
deps subdirectory inside your application directory. This file maintains a history of all latest to release
conversions made to ensure consistency with any libraries added in the future.

1.4.2 Tools package versioning

The ModusToolbox™ tools installation package is versioned as MAJOR.MINOR.PATCH. The file located at
<install_path>/ModusToolbox/tools_3.2/version-3.2.0.xml also indicates the build number.

Every MAJOR.MINOR version of a ModusToolbox™ product is installed by default into
<install_path>/ModusToolbox. So, if you have multiple versions of ModusToolbox™ software installed, they are
all installed in parallel in the same ModusToolbox directory, as follows:

1.4.3 Multiple tools versions installed

When you run make commands from the command line, a message displays if you have multiple versions of the

"tools" directory installed and if you have not specified a version to use.

INFO: Multiple tools versions were found in

"/cygdrive/c/Users/XYZ/ModusToolbox/tools_3.1

/cygdrive/c/Users/XYZ/ModusToolbox/tools_3.2 C:/Users/XYZ/ModusToolbox/tools_3.1

C:/Users/XYZ/ModusToolbox/tools_3.2". This build is currently using

"C:/Users/XYZ/ModusToolbox/tools_3.2". Check that this is the correct version that

should be used in this build. To stop seeing this message, set the CY_TOOLS_PATHS

environment variable to the location of the tools directory. This can be done

either as an environment variable or set in the application Makefile.

User guide 17 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Introduction

1.4.4 Specifying alternate tools version

By default, the ModusToolbox™ software uses the most current version of the tools_<version> directory
installed. That is, if you have ModusToolbox™ versions 3.1 and 3.0 installed, and if you launch the Eclipse IDE

from the ModusToolbox™ 3.0 installation, the IDE will use the tools from the tools_3.1 directory to launch
configurators and build an application. This section describes how to specify the path to the desired version.

1.4.4.1 Environment variable

The overall way to specify a path other than the default "tools" directory, is to use a system variable named
CY_TOOLS_PATHS. On Windows, open the Environment Variables dialog, and create a new System/User

Variable:

Note: Use a Windows style path, (that is, not like /cygdrive/c/). Also, use forward slashes. For example:

C:/Users/XYZ/ModusToolbox/tools_3.1/

Use the appropriate method for setting variables in macOS and Linux for your system.

1.4.4.2 Specific project Makefile

To preserve a specific "tools" path for the specific project, edit that project's Makefile, as follows:

If you install the IDE in a custom location, add the path to its

"tools_X.Y" folder (where X and Y are the version number of the tools

folder).

CY_TOOLS_PATHS+=C:/Users/XYZ/ModusToolbox/tools_3.1

1.4.5 Tools and configurators versioning

Every tool and configurator follow the standard versioning scheme and include a version.xml file that also
contains a build number.

1.4.5.1 Configurator messages

Configurators indicate if you are about to modify the configuration file (for example, design.modus) with a
newer version of the configurator, as well as if there is a risk that you will no longer be able to open it with the

previous version of the configurator:

User guide 18 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Introduction

Configurators will also indicate if you are trying to open the existing configuration with a different, backward
and forward compatible version of the Configurator.

Note: If using the command line, the build system will notify you with the same message.

1.4.6 GitHub libraries versioning

GitHub libraries follow the same versioning scheme: MAJOR.MINOR.PATCH. The GitHub libraries, besides the
code itself, also provide two files in MD format: README and RELEASE. The latter includes the version and the

change history.

The versioning for GitHub libraries is implemented using GitHub tags. These tags are captured in the manifest

files (see the Manifest files chapter for more details). The Project Creator tool parses the manifests to determine
which BSPs and applications are available to select. The Library Manager tool parses the manifests and allow

you to see and select between various tags of these libraries. When selecting a particular library of a particular
version, the .mtb file gets created in your project. These .mtb files are a link to the specific tag. Refer to the

Library Manager user guide for more details about tags.

Once complete with initial development for your project, if using the git clone method to create the

application instead of the Project Creator tool, we recommend you switch to specific "release" tags. Otherwise,
running the make getlibs command will update the libraries referenced by the .mtb files, and will deliver the
latest code changes for the major version.

1.4.7 Dependencies between libraries

The following diagram shows the dependencies between libraries.

http://www.infineon.com/ModusToolboxLibraryManager

User guide 19 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Introduction

There are dependencies between the libraries. There are two types of dependencies:

1.4.7.1 Git repo dependencies via .mtb files

Dependencies for various libraries are specified in the manifest file. Only the top-level application will have

.mtb files for the libraries it directly includes.

1.4.7.2 Regular C dependencies via #include

Our libraries only call the documented public interface of other Libraries. Every library declares its version in
the header. The consumer of the library including the header checks if the version is supported, and will notify

via #error if the newer version is required. Examples of the dependencies:

• The Device Support library (PDL) driver is used by the Middleware.

• The configuration generated by the Configurator depends on the versions of the device support library

(PDL) or on the Middleware headers.

Similarly, if the configuration generated by the configurator of the newer version than you have installed, the

notification via the build system will trigger asking you to install the newer version of the ModusToolbox™

software, which has a fragmented distribution model. You are allowed and empowered to update libraries
individually.

1.5 Partner ecosystems

To support Infineon microcontrollers in our partner ecosystems, some tools and middleware from
ModusToolbox™ software are also integrated into Amazon FreeRTOS. Refer to

https://aws.amazon.com/freertos/ to learn more about developing applications in those environments.

https://aws.amazon.com/freertos/

User guide 20 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Getting started

2 Getting started

ModusToolbox™ software provides various graphical user interface (GUI) and command-line interface (CLI)
tools to create and configure applications the way you want. You can use the included Eclipse-based IDE, which

provides an integrated flow with all the ModusToolbox™ tools. Or you can use other IDEs, such as VS Code, or

no IDE at all. Plus, you can switch between GUI and CLI tools in various ways to fit your design flow. Regardless
of what tools you use, the basic flow for getting started with ModusToolbox™ software includes these tasks:

• Install and configure software

• Launch Dashboard

• Create application from template

• Understand application structures

• Build and program

This chapter helps you get started using various ModusToolbox™ tools. It covers these tasks, showing both the
GUI and CLI options available.

2.1 Install and configure software

The ModusToolbox™ tools package is located on our website:

https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/

You can install the software on Windows, Linux, and macOS. Refer to the ModusToolbox™ tools package

installation guide for specific instructions.

2.1.1 GUI set-up instructions

In general, the IDE and other GUI-based tools included as part of the ModusToolbox™ tools package work out of
the box without any changes required. Simply launch the executable for the applicable GUI tool. On Windows,

most tools are on the Start menu.

2.1.2 CLI set-up instructions

Before using the CLI tools, ensure that the environment is set up correctly. To check your installation, open the

appropriate command-line terminal for your operating system.

Note: For Windows, the tools package provides a command-line utility called "modus-shell." You can
run this from the Start menu ModusToolbox 3.2 > modus-shell, or type "modus-shell" in the

Windows search box.

• Type which make. For most environments, it should return /usr/bin/make.

• Type which git. For most environments, it should return /usr/bin/git.

If these commands return the appropriate paths, then you can begin using the CLI. Otherwise, install and

configure the GNU make and Git packages as appropriate for your environment.

https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-product_families
http://www.infineon.com/ModusToolboxInstallGuide
http://www.infineon.com/ModusToolboxInstallGuide

User guide 21 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Getting started

2.2 Launch Dashboard

The ModusToolbox™ tools package includes a tool called the Dashboard. On Windows, you can launch this
optional tool from the last step of the installer. You can also launch it manually as applicable for your operating

system.

The Dashboard provides links to various sources of documentation and training materials. It also contains

starting points: create a new application, create/edit a BSP, install or launch the ModusToolbox™ Setup

program.

For more details about this tool, refer to the Dashboard user guide.

2.3 Create application from template

ModusToolbox™ software includes the Project Creator as both a GUI tool and a command line tool to easily

create ModusToolbox™ applications. The Project Creator tool clones the selected BSP and code example

template(s), and then creates the directory structure at the specified location with the specified name. The
Project Creator tools also run the required processes to download and import all the necessary libraries and

dependencies.

Note: This section describes creating a new application from a template. The process to import or share

an existing application is covered in the Using applications with third-party tools chapter.

https://www.infineon.com/ModusToolboxDashboard

User guide 22 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Getting started

2.3.1 Project Creator GUI

The Project Creator GUI tool provides a series of screens to select a BSP and code example template(s), specify
the application name and location, as well as select the target IDE. The tool displays various messages during

the application creation process.

Open the Project Creator GUI tool from the Dashboard or as applicable for your operating system. The
executable file is installed in the following directory, by default:

<install_path>/ModusToolbox/tools_3.2/project-creator/

Refer to the Project Creator user guide for more details.

Note: The Target IDE option (on the Select Application page) is used to generate necessary files for the

selected IDE. The Dashboard passes any selected Target IDE to the Project Creator tool. If you
launch the Project Creator GUI tool from the included Eclipse-based IDE, the tool seamlessly

exports the created application for use in the Eclipse IDE.

2.3.2 project-creator-cli

You can also use the project-creator-cli tool to create applications from a command-line prompt or from within
batch files or shell scripts. The tool is located in the same directory as the GUI version

(<install_path>/ModusToolbox/tools_3.2/project-creator/). To see all the options available, run the tool with the

-h option:

./project-creator-cli -h

The following example shows running the tool with various options.

./project-creator-cli \

 --board-id CY8CKIT-062-WIFI-BT \

 --app-id mtb-example-psoc6-hello-world \

 --user-app-name MyLED \

 --target-dir "C:/my_projects"

http://www.infineon.com/ModusToolboxProjectCreator

User guide 23 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Getting started

In this example, the project-creator-cli tool clones the Hello World code example template from our GitHub
server (https://github.com/Infineon). It also updates the TARGET variable in the Makefile to match the selected

BSP (--board-id), and obtains the necessary library files. This example also includes options to specify the

name (--user-app-name) and location (--target-dir) where the application will be stored.

Note: You can run the git clone and make getlibs commands directly from a terminal; however, we
recommend using the Project Creator tools (GUI or CLI) because some applications require
additional processes to acquire all the submodules. If you choose to run the commands manually,

make sure you thoroughly understand all the requirements of the selected application. Refer to

the code example README.md file for details as needed.

2.4 Understand application structures

After creating one or more applications, they will be located in a top-level container, or workspace directory,
that contains a project creation log file, one or more application directories, plus a mtb_shared directory.

Depending on the example you chose to create the application, it can be either single-core or multi-core.

2.4.1 Version 2.x BSPs/applications versus 3.x BSPs/applications

Some code examples still create ModusToolbox™ 2.x format BSPs and applications. These 2.x applications, as

well as any you created using ModusToolbox™ versions 2.2 through 2.4, fully function in the 3.x ecosystem. The

following table highlights a few key differences between 2.x BSPs/applications and 3.x BSPs/applications:

Item Version 2.x Version 3.x

BSP Assistant usage Not applicable Creates and updates 3.x BSPs

Default BSP type Git repo, to make changes requires custom

BSP

Application-owned, can be directly

modified

Local BSP location Under the libs directory Under the bsps directory

design.modus file location libs/COMPONENT_BSP_DESIGN_MODUS

subdirectory

bsps/config subdirectory

Makefile MTB_TYPE variable Not applicable Identifies single-core vs. multi-core

applications

This user guide focuses on the 3.x application structure. For more details about 2.x applications and BSPs, refer
to the older revision of this user guide, located in the docs_2.4 directory of the ModusToolbox™ 2.4 installation.

To take full advantage of the newest features, you can easily migrate version 2.x applications to the 3.x
structure following Knowledge Base Article KBA236134. This KBA provides instructions for replacing your BSP
and associated libraries with compatible versions for 3.x.

Note: You cannot mix and match version 2.x format applications with 3.x format BSPs, or vice-versa.

https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software
https://community.infineon.com/t5/Knowledge-Base-Articles/Migrating-ModusToolbox-applications-from-version-2-x-to-version-3-x-KBA236134/ta-p/374825

User guide 24 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Getting started

2.4.2 Single-core 3.x application

A typical single-core 3.x application, such as "Hello World," is one project directory with application source
code, a Makefile, and assorted files, in addition to the bsps, deps, images, and libs subdirectories. A single-core

application uses the ModusToolbox™ build system to produce a single ELF file for use on a single-core MCU.

The following describe the contents for a single-core project directory:

• .gitignore file – This file contains information about files for Git to ignore such as common, tool- or user-

specific files that are typically not checked into a version control system.

• LICENSE file – This is the license agreement.

• Source code – This is one or more files for your project's code. Often it is named main.c, but it could be

more than one file and the files could have almost any name. Source code files can also be grouped into a

subdirectory anywhere in the application's directory (for example, sources/main.c).

• Makefile – This is the project's Makefile, which contains configuration information such as TARGET for the

BSP, TOOLCHAIN, and MTB_TYPE for the type of application; in this case, COMBINED.

• README.md file – This file describes the code example that was used to create the project.

• bsps subdirectory – This directory contains one or more BSPs for this specific project.

• deps subdirectory – By default, this subdirectory contains <library>.mtb files for libraries that were

included directly or for which you changed using the Library Manager.

• This subdirectory also contains the assetlocks.json file, which keeps track of the version for each

dependent library.

• images subdirectory – If a project has images used by the README.md file, for example, this directory

contains those images.

• libs subdirectory – This subdirectory may contain different types of files generated by the project creation

process, based on how the project is created. You can regenerate these files using the Library Manager, so

you do not need to add these files to source control.

• If you update your project to specify any libraries to be local, then this directory will contain source

code for those libraries.

• By default, this subdirectory contains the <library>.mtb files for libraries included as indirect

dependencies of the BSP or other libraries.

• This directory also contains the mtb.mk file that lists the shared libraries and their versions.

Note: If an application needs to modify a standard BSP's configuration, then it will include a templates
directory with various BSP templates, which contain configuration files (for example,
design.modus) and a reserved resources list. If an application uses the BSP's configuration as-is,

then it won't include a templates directory.

User guide 25 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Getting started

2.4.3 Multi-core 3.x application

A multi-core 3.x application, such as "Dual-CPU_Empty_PSoC6_App," includes three makefiles and various
assorted files described under single-core 3.x application. It also contains separate subdirectories for each of

the core projects, plus the bsps subdirectory that applies to all the core projects in the application. A multi-core
application directory hierarchy builds multiple ELF files for various purposes (for example, to support boot
loading, multi-core support, or secure enclave scenarios).

2.4.3.1 Multi-core application directory

A multi-core application directory contains the following files and subdirectories:

• Makefile – The application Makefile contains the MTB_TYPE variable set to APPLICATION, plus the
MTB_PROJECTS variable to specify the included projects. This file also includes the common_app.mk file
and the path information to the application.mk file in the installation tools_<version> directory. This is
responsible for forwarding build related requests to the individual core projects and dealing with post-build

activities (for example, generating single monolithic HEX files that can be used to program all projects

simultaneously) when they are complete.

• common.mk – This makefile is shared across all projects. It contains variables including: MTB_TYPE,

TARGET, TOOLCHAIN, and CONFIG. In this case, MTB_TYPE=PROJECT. This file also includes a reference to

the common_app.mk file.

• common_app.mk – This makefile is shared across the entire application and all its projects. It contains

path information to indicate the location of the installation tools_<version> directory.

• bsps subdirectory – This contains one or more BSPs for all projects in the multi-core application.

• Multi-core project subdirectories – These contain the source code and Makefile for each specific core

project. The name format is proj_<core>; for example, "proj_cm7_0" or "proj_cm0p".

User guide 26 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Getting started

2.4.3.2 Multi-core project directories

Each multi-core project directory contains its own project Makefile that is responsible for compiling and linking
a single ELF image. Multi-core project directories are similar to single-core project directories in that they

contain source code, as well as libs and deps subdirectories. One main difference is that multi-core project
directories do not have a bsps subdirectory, because they use the same BSP from the multi-core application
directory.

• Source code – This is one or more files for the core project's code.

• Makefile – This is the core project's Makefile. It includes numerous variables used for the projects, such as
COMPONENTS, CORE, CORE_NAME, and other variables used to specify flags and pre-build and post-build
commands. This file also includes path information for source code discovery, shared repo location, and
path to the complier. Plus, it includes the common.mk file from the application and the path information to

the start.mk file in the installation tools_<version> directory.

• README.md file – This file contains information for the specific core project.

• deps subdirectory – By default, this subdirectory contains <library>.mtb files for libraries that were

included directly or for which you changed using the Library Manager.

• This subdirectory also contains the assetlocks.json file, which keeps track of the version for each

dependent library.

• libs subdirectory – This subdirectory may contain different types of files generated by the project creation
process, based on how the project is created. You can regenerate these files using the Library Manager, so

you do not need to add these files to source control.

• If you update your project to specify any libraries to be local, then this directory will contain source

code for those libraries.

• By default, this subdirectory contains the <library>.mtb files for libraries included as indirect

dependencies of the BSP or other libraries.

• This directory also contains the mtb.mk file that lists the shared libraries and their versions.

2.4.4 mtb_shared directory

Each workspace you create with one or more applications will also include a mtb_shared directory adjacent to
the application directories, and this is where the shared libraries are cloned by default. This location can be
modified by specifying the CY_GETLIBS_PATH variable. Duplicate libraries are checked to see if they point to

the same commit, and if so, only one copy is kept in the mtb_shared directory. You can regenerate these files
using the Library Manager, so you do not need to add these files to source control.

User guide 27 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Getting started

2.5 Build and program

After the application has been created, you can use the supported IDE of your choice for building and
programming. You can also use command line tools. The ModusToolbox™ build system infrastructure provides

several make variables to control the build. So, whether you are using an IDE or command line tools, you edit
the Makefile variables as appropriate. See the ModusToolbox™ build system chapter for detailed
documentation on the build system infrastructure.

Variable Description

TARGET Specifies the target board/kit. For example, CY8CPROTO-062-4343W

APPNAME Specifies the name of the application

TOOLCHAIN Specifies the build tools used to build the application

CONFIG Specifies the configuration option for the build [Debug Release]

VERBOSE Specifies whether the build is silent or verbose [0 - 3]

ModusToolbox™ software is tested with various versions of the TOOLCHAIN values listed in the following table.
Refer to the release information for each product for specific versions of the toolchains.

TOOLCHAIN Tools Host OS

GCC_ARM GNU Arm Embedded Compiler macOS, Windows, Linux

ARM Arm compiler Windows, Linux

IAR Embedded Workbench Windows

In the Makefile, set the TOOLCHAIN variable to the build tools of your choice. For example:
TOOLCHAIN=GCC_ARM. There are also variables you can use to pass compiler and linker flags to the toolchain.

ModusToolbox™ software installs the GNU Arm toolchain and uses it by default. If you wish to use another
toolchain, you must provide it and specify the path to the tools. For example,

CY_COMPILER_PATH=<yourpath>. If this path is blank, the build infrastructure looks in the ModusToolbox/
install directory.

2.5.1 Use an IDE

The ModusToolbox™ ecosystem supports third-party IDEs, and we provide user guides for using those IDEs with
a ModusToolbox™ application:

• Eclipse IDE for ModusToolbox™ user guide

• Visual Studio Code for ModusToolbox™ user guide

• Keil µVision for ModusToolbox™ user guide

• IAR Embedded Workbench for ModusToolbox™ user guide

https://www.infineon.com/MTBEclipseIDEUserguide
https://www.infineon.com/MTBVSCodeUserGuide
https://www.infineon.com/MTBuVisionUserGuide
https://www.infineon.com/MTBIARUserGuide

User guide 28 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Getting started

2.5.2 Use command line

2.5.2.1 make build

When the Project Creator tool finishes creating the application and imports all the required dependencies, the
application is ready to build. From the appropriate terminal, type the following:

make build

This instructs the build system to find and gather the source files in the application and initiate the build
process. In order to improve the build speed, you may parallelize it by giving it a -j flag (optionally specifying

the number of processes to run). For example:

make build -j16

2.5.2.2 make program

Connect the target board to the machine and type the following in the terminal:

make program

This performs an application build and then programs the application artifact (usually an .elf or .hex file) to the

board using the recipe-specific programming routine (usually OpenOCD). You may also skip the build step by

using qprogram instead of program. This will program the existing build artifact.

User guide 29 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Updating the example application

3 Updating the example application

After completing the process to create and build an example application and program a board, you may wish to
update the application in various ways to explore its capabilities. This chapter covers some of the basic tasks,

including:

• Update libraries

• Create/edit BSPs

• Configure settings for devices, peripherals, and libraries

• Write application code

• Debug the application

3.1 Update libraries

Use the Library Manager tool to add or remove BSPs and libraries for your application, as well as change
versions for libraries. You can also change the active BSP for your application.

Open the Library Manager GUI tool from the application directory using the make library-manager
command. The Library Manager opens for the selected application and its available BSPs and libraries.

Note: There are several ways to open the Library Manager; refer to the Library Manager user guide for
more details.

http://www.infineon.com/ModusToolboxLibraryManager

User guide 30 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Updating the example application

3.2 Create/edit BSPs

Use the BSP Assistant to change devices or add and remove configurations for the BSP in your application. The
tool offers GUI and CLI versions. For more details, refer to the BSP Assistant user guide.

You can open the BSP Assistant GUI tool from Dashboard tool, or as applicable for your operating system. When

opened this way, the BSP Assistant provides options to open an existing BSP, or create a new one.

If you have an existing application, open the tool from the application directory using the make bsp-
assistant command. This opens the BSP Assistant for the selected BSP.

http://www.infineon.com/ModusToolboxBSPAssistant

User guide 31 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Updating the example application

3.3 Configure settings for devices, peripherals, and libraries

Depending on your application, you may want to update and generate some of the configuration code. While it
is possible to write configuration code from scratch, the effort to do so is considerable. ModusToolbox™

software provides applications called configurators that make it easier to configure a hardware block or a
middleware library. For example, instead of having to search through all the documentation to configure a
serial communication block as a UART with a desired configuration, open the appropriate configurator to set
the baud rate, parity, stop bits, etc.

Before configuring your device, you must decide how your application will interact with the hardware; see
Application layers. That decision affects how you configure settings for devices, peripherals, and libraries.

The configurators can be run as GUIs to easily update various parameters and settings. Most can also be run as

command line tools to regenerate code as part of a script. For more information about configurators, see the

Configurators section. Also, each configurator provides a separate document, available from the configurator's
Help menu, that provides information about how to use the specific configurator.

3.3.1 Configurator GUI tools

You can open various configurator GUIs using the appropriate make command from the application directory.

For example, to open the Device Configurator, run:

make device-configurator

This opens the Device Configurator with the current application's design.modus configuration file.

As described under Tools targets, you can use the make command with appropriate arguments to open any

configurator. For example, to open the CAPSENSE™ Configurator, run:

make capsense-configurator

User guide 32 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Updating the example application

You can also use the Eclipse IDE provided with ModusToolbox™ software to open configurators. For example, if
you select the "Device Configurator" link in the IDE Quick Panel, the tool opens with the application's

design.modus file. Refer to the Eclipse IDE for ModusToolbox™ user guide for more details about the Eclipse IDE.

One other way to open BSP configurators (such as CAPSENSE™ and SegLCD Configurators) is by using a link
from inside the Device Configurator. However, this does not apply to Library configurators (such as Bluetooth®

and USB Configurators).

3.3.2 Configurator CLI tools

Most of the configurators can also be run from the command line. The primary use case is to re-generate source
code based on the latest configuration settings. This would often be part of an overall build script for the entire

application. The command-line configurator cannot change configuration settings. For information about

command line options, run the configurator using the -h option.

3.4 Write application code

As in any embedded development application using any set of tools, you are responsible for the design and

implementation of the firmware. This includes not just low-level configuration and power mode transitions, but

all the unique functionality of your product. When writing application code, you must decide how the
application will interact with the hardware; see Application layers.

ModusToolbox™ software is designed to enable your workflow. It includes an integrated Eclipse IDE, as well as
support for Visual Studio (VS) Code, IAR Embedded Workbench, and Keil µVision (see Using supported IDEs).

You can also use a text editor and command line tools. Taken together, the multiple resources available to you

in ModusToolbox™ software: BSPs, configurators, driver libraries, and middleware, help you focus on your

specific application.

3.4.1 Application layers

There are four distinct ways for an application to interact with the hardware as shown in the following diagram:

• HAL structures: Application code uses the HAL, which interacts with the PDL through structures created by

the HAL

• Configurator structures: Application code uses PDL through structures created by a Configurator.

• Manual structures: Application code uses PDL through structures created manually.

• Register read/write: Application code uses direct register read and writes.

Hardware

User Application

HAL

PDL

HAL Structures

PDL PDL

Configurator Structures Manual Structures Register Read/Write

https://www.infineon.com/MTBEclipseIDEUserGuide

User guide 33 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Updating the example application

Note: A single application may use different methods for different peripherals.

3.4.1.1 HAL

Using the HAL is more portable than the other methods. It is the preferred method for simpler functions and

those that don't have extremely strict flash size limitations. It is a high-level interface to the hardware that
allows many common functions to be done quickly and easily. This allows the same code to be used even if
there are changes to pin assignments, different devices in the same family, or even to a different family that
may have radically different underlying architectures. For more details, refer to HAL on GitHub.

The advantages include:

• Easy hardware changes. Just change the pin assignment in the BSP and the code remains the same. For

example, if LED1 changes from P0_0 to P0_1, the code remains the same as long as the code uses the name

LED1 with the HAL. The only change is to the BSP pin assignment.

• Easy migration to a different device as product requirements change.

• Ability to use the same code base across multiple projects and generations, even if underlying architectures

are different.

The disadvantages include:

• The HAL may not support every feature that the hardware has. It supports the most common features but

not all of them to maintain simplicity.

• The HAL will use additional flash space. The additional flash depends on which HAL APIs are used.

3.4.1.2 PDL

The PDL is a lower-level interface to the hardware (but still simpler than direct register access) that supports all
hardware features. Usually the PDL goes hand-in-hand with Configurators, which will be described next. Since
the PDL interacts with the hardware at a lower level it is less portable between devices, especially those with

different architectures. For more details, refer to PDL on GitHub.

The advantages/disadvantages are the exact opposite of those for the HAL. The main advantage is that it

provides access to every hardware feature.

3.4.1.3 Configurators

Configurators make initial setup easier for hardware accessed using the PDL. The Configurators create
structures that the PDL requires without you needing to know the exact composition of each structure, and

they create the proper structure based on your selections. See Configurators for more information.

If you use the HAL for a peripheral, it will create the necessary structures for you, so you should NOT use a

Configurator to set them up. The HAL structure is accessible, and once you initialize a peripheral with the HAL
you can view and even modify that structure (that is, a HAL object). The underlying structures are hardware-
specific, so you may be sacrificing portability if you modify the structure manually. There are a few exceptions.
For example, it is reasonable to configure system items (such as clocks) and use them with the HAL.

https://infineon.github.io/psoc6hal/html/index.html
https://infineon.github.io/psoc6pdl/pdl_api_reference_manual/html/index.html

User guide 34 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Updating the example application

3.5 Debug the application

When you've added and changed code in your application, it is likely that something will not work as expected.
At that point, you need to debug the application to determine what is wrong, or how to optimize the desired

behavior. Similar to building an application and programming the board, you can use an IDE or command line
options to debug the application.

3.5.1 Use Eclipse IDE

When using the provided Eclipse IDE, click the appropriate "Program" link in the Quick Panel for the selected
application.

Refer to the "Program and Debug" chapter in the Eclipse IDE for ModusToolbox™ user guide for details about

launch configs and various debugger settings.

3.5.2 Export to another IDE

If you prefer to use an IDE other than Eclipse, refer to your preferred IDE's documentation for debugging
instructions. As noted under the Build and program section, you export a ModusToolbox™ application to a

supported IDE following instructions in Using supported IDEs. There are also some debugging set-up
instructions in that section.

3.5.3 Use command line

When debugging via command line, use the following commands, as applicable:

• make debug – Build and program the board. Then launch the GDB server.

• make qdebug – Skip the build and program steps. Just launch the GDB server.

• make attach – Starts a GDB client and attaches the debugger to the running target.

https://www.infineon.com/MTBEclipseIDEUserGuide

User guide 35 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

ModusToolbox™ build system

4 ModusToolbox™ build system

This chapter covers various aspects of the ModusToolbox™ build system. Refer to CLI set-up instructions for
getting started information about using the command line tools. This chapter is organized as follows:

• Overview

• make help

• make getlibs

• BSPs

• Environment variables

• Adding source files

• Pre-builds and post-builds

• Available make targets

• Available make variables

4.1 Overview

The ModusToolbox™ build system is based on GNU make. It performs application builds and provides the logic
required to launch tools and run utilities. It consists of a light and accessible set of Makefiles deployed as part of

every application. This structure allows each application to own the build process, and it allows environment-

specific or application-specific changes to be made with relative ease. The system runs on any environment

that has the make and git utilities.

Note: User-defined command line make parameters are not supported and the only supported variables

are TOOLCHAIN and TARGET.

The ModusToolbox™ command line interface (CLI) and supported IDEs all use the same build system. Hence,

switching between them is fully supported. Program/Debug and other tools can be used in either the command
line or an IDE environment. In all cases, the build system relies on the presence of ModusToolbox™ tools

included with the ModusToolbox™ installer.

The tools contain a start.mk file that serves as a reference point for setting up the environment before

executing the recipe-specific build in the base library. The file also provides a getlibs make target that brings

libraries into an application. Every application must then specify a target board on which the application will
run. These are provided by the <BSP>.mk files deployed as a part of a BSP library.

The majority of the Makefiles are deployed as git repositories (called "repos"), in the same way that libraries are

deployed in the ModusToolbox™ software. There are two separate repos: core-make used by all recipes and a
recipe-make-xxx that contains BSP/target specific details. These are the minimum required to enable an

application build. Together, these Makefiles form the build system.

User guide 36 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

ModusToolbox™ build system

4.2 make help

The ModusToolbox™ build system includes a make help target that provides help documentation. In order to
use the help, you must first run the make getlibs command in an application directory (see make getlibs for

details). From the appropriate shell in an application directory, type in the following to print the available make
targets and variables to the console:

make help

To view verbose documentation for any of these targets or variables, specify them using the CY_HELP variable.

For example:

make help CY_HELP=TOOLCHAIN

Note: This help documentation is part of the base library, and it may also contain additional information

specific to a BSP.

4.3 make getlibs

When you run the make getlibs command, the build system finds all the .mtb files in the application

directory and performs git clone operations on them. A .mtb file contains the source location of a library

repo, a specific tag for a version of the code, and the location to store the library.

The getlibs target finds and processes all .mtb files and uses the git command to clone or pull the code as

appropriate. The target generates .mtb files for indirect dependencies. Then, it checks out the specific tag listed
in the .mtb file. The Project Creator and Library Manager invoke this process automatically.

Note: ModusToolbox™ version 3.x no longer supports the old LIB flow, thus all .lib files are ignored.

• The getlibs target must be invoked separately from any other make target (for example, the command

make getlibs build is not allowed and the Makefiles will generate an error; however, a command such

as make clean build is allowed).

• The getlibs target performs a git fetch on existing libraries but will always checkout the tag pointed to

by the overseeing .mtb file.

• The getlibs target detects if users have modified standard code and will not overwrite their work. This
allows you to perform some action (for example commit code or revert changes, as appropriate) instead of

overwriting the changes.

The build system also has a printlibs target that can be used to print the status of the cloned libraries.

4.3.1 repos

The cloned libraries are located in their individual git repos in the directory pointed to by the
CY_GETLIBS_PATH variable (for example, /deps). These all point to the "our" remote origin. You can point your
repo by editing the .git/config file or by running the git remote command.

If the repos are modified, add the changes to your source control (git branch is recommended). When make
getlibs is run (to either add new libraries or update libraries), it requires the repos to be clean (that is, all

changes must be committed). You may also use the .gitignore file for adding untracked files when running make
getlibs. See also KBA231252.

https://community.infineon.com/docs/DOC-21498

User guide 37 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

ModusToolbox™ build system

4.4 BSPs

An application must specify a target BSP through the TARGET variable in the Makefile. We provide BSPs based
on our kits to use as a starting point. When you create an application, the selected BSP is then owned by that

application, and you can modify it as needed. For more information about BSPs, refer to the Board support
packages chapter.

• When using the Project Creator to create an application, it provides the selected BSP and updates the

Makefile.

• Use the Library Manager to add, update, or remove a BSP from an application. You can also add a .mtb file

that contains the URL and a version tag of interest in the application.

4.5 Environment variables

ModusToolbox™ software supports custom installation paths, and we provide the following variables to specify
locations of tools and support files other than the default:

• CY_TOOLS_PATHS (path to the installation "tools_<version>" directory)

• CyManifestLocOverride (path to the local manifest.loc file)

• CyRemoteManifestOverride (URL to a specific manifest file)

We also include a global path for assets like device-db using the variable named CY_GETLIBS_GLOBAL_PATH. If
the variable does not exist, it assumes a default path of ~/.modustoolbox/global.

Note: When entering variables that require a path, use a Windows-style path (not Cygwin-style, like
/cygdrive/c/). Also, use forward slashes. For example, "C:/MyPath/ModusToolbox/tools_3.2".

4.6 Adding source files

Source and header files placed in the application directory hierarchy are automatically added by the auto-

discovery mechanism. Similarly, library archives and object files are automatically added to the application.

Any object file not referenced by the application is discarded by the linker. The Project Creator and Library
Manager tools run the make getlibs command and generate a mtb.mk file in the application's libs

subdirectory. This file specifies the location of shared libraries included in the build.

The application Makefile can also include specific source files (SOURCES), header file locations (INCLUDES) and

prebuilt libraries (LDLIBS). This is useful when the files are located outside of the application directory

hierarchy or when specific sources need to be included from the filtered directories.

4.6.1 Auto-discovery

The build system implements auto-discovery of library files, source files, header files, object files, and pre-built
libraries. If these files follow the specified rules, they are guaranteed to be brought into the application build

automatically. Auto-discovery searches for all supported file types in the application directory hierarchy and
performs filtering based on a directory naming convention and specified directories, as well as files to ignore. If

files external to the application directory hierarchy need to be added, they can be specified using the SOURCES,
INCLUDES, and LIBS make variables.

To control which files are included/excluded, the build system implements a filtering mechanism based on
directory names and .cyignore files.

User guide 38 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

ModusToolbox™ build system

4.6.1.1 .cyignore

Prior to applying auto-discovery and filtering, the build system will first search for .cyignore files and construct
a set of directories and files to exclude. It contains a set of directories and files to exclude, relative to the

location of the .cyignore file. Wildcards and expressions are not allowed, and each directory or file requires its
own entry. However, the .cyignore file can contain make variables. For example, you can use the SEARCH_
variable to exclude code from other libraries as shown for the "Test" directory in a library called <library-
name>:

$(SEARCH_<library-name>)/Test

The CY_IGNORE variable can also be used in the Makefile to define directories and files to exclude.

Note: The CY_IGNORE variable should contain paths that are relative to the application root.

For example, ./src1.

4.6.1.2 TOOLCHAIN_<NAME>

Any directory that has the prefix "TOOLCHAIN_" is interpreted as a directory that is toolchain specific. The
"NAME" corresponds to the value stored in the TOOLCHAIN make variable. For example, an IAR-specific set of

files is located under a directory named TOOLCHAIN_IAR. Auto-discovery only includes the TOOLCHAIN_<NAME>
directories for the specified TOOLCHAIN. All others are ignored. ModusToolbox™ supports IAR, ARM, and

GCC_ARM.

4.6.1.3 TARGET_<NAME>

Any directory that has the prefix "TARGET_" is interpreted as a directory that is target specific. The "NAME"

corresponds to the value stored in the TARGET make variable. For example, a build with TARGET=CY8CPROTO-

062-4343W ignores all TARGET_ directories except TARGET_CY8CPROTO-062-4343W.

Note: The TARGET_ directory is often associated with the BSP, but it can be used in a generic sense. E.g.

if application sources need to be included only for a certain TARGET, this mechanism can be used
to achieve that.

Note: The output directory structure includes the TARGET name in the path, so you can build for target A

and B and both artifact files will exist on disk.

4.6.1.4 CONFIG_<NAME>

Any directory that has the prefix "CONFIG_" is interpreted as a directory that is configuration (Debug/Release)
specific. The "NAME" corresponds to the value stored in the CONFIG make variable. For example, a build with

CONFIG=CustomBuild ignores all CONFIG_ directories, except CONFIG_CustomBuild.

Note: The output directory structure includes the CONFIG name in the path, so you can build for config A
and B and both artifact files will exist on disk.

User guide 39 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

ModusToolbox™ build system

4.6.1.5 COMPONENT_<NAME>

Any directory that has the prefix "COMPONENT_" is interpreted as a directory that is component specific. This is
used to enable/disable optional code. The "NAME" corresponds to the value stored in the COMPONENT make

variable. For example, consider an application that sets COMPONENTS+=comp1. Also assume that there are two
directories containing component-specific sources:

COMPONENT_comp1/src.c

COMPONENT_comp2/src.c

Auto-discovery will only include COMPONENT_comp1/src.c and ignore COMPONENT_comp2/src.c. If a specific
component needs to be removed, either delete it from the COMPONENTS variable or add it to the

DISABLE_COMPONENTS variable.

4.6.1.6 BSP makefile

Auto-discovery will also search for a bsp.mk file (aka, BSP makefile). If no matching BSP makefile is found, it will
fail to build.

4.7 Pre-builds and post-builds

A pre-build or post-build operation is typically a script file invoked by the build system. Such operations are

possible at several stages in the build process. They can be specified at the application, BSP, and recipe levels.

You can pre-build and post-build arguments in the application Makefile. For example:

project_prebuild:

 command1 -arg1

 Command2 -arg2

The sequence of execution in a build is as follows:

1. Recipe pre-build – Defined using recipe_prebuild target.

2. BSP pre-build – Defined using bsp_prebuild target.

3. Project pre-build – Defined using project_prebuild target.

4. Source compilation and linking.

5. Recipe post-build – Defined using recipe_postbuild target.

6. BSP post-build – Defined using bsp_postbuild target.

7. Project post-build – Defined using project_postbuild target.

User guide 40 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

ModusToolbox™ build system

4.8 Available make targets

A make target specifies the type of function or activity that the make invocation executes. The build system
does not support a make command with multiple targets. Therefore, a target must be called in a separate make

invocation. The following tables list and describe the available make targets for all recipes.

4.8.1 General make targets

Target Description

all Same as build. That is, builds the application.

This target is equivalent to the "build" target.

getlibs Clones the repositories and checks out the identified commit.

When using .mtb files, the repos are cloned to the shared location

$(CY_GETLIBS_SHARED_PATH)/$(CY_GETLIBS_SHARED_NAME). By default, this directory

is specified by the project Makefile.

build Builds the application.

The build process involves source auto-discovery, code-generation, pre-builds, and post-builds. For

faster incremental builds, use the qbuild target to skip the auto-discovery step.

For multi-core applications, running this target builds all core projects in the application, and

generates a combined hex file.

build_proj Build a single project.

Build a single target in the application. In single core-applications, this target is the same as the

"build" target.

qbuild Quick builds the application using the previous build's source list.

When no other sources need to be auto-discovered, this target can be used to skip the auto-

discovery step for a faster incremental build.

qbuild_proj Builds a single project using the previous build's source list. In the single project-applications, this

target is the same as the "qbuild" target.

When no other sources need to be auto-discovered, this target can be used to skip the auto-

discovery step for a faster incremental build.

program Builds the application and programs it to the target device. In multi-core applications, this will

program the combined hex file.

The build process performs the same operations as the build target. Upon completion, the

artifact is programmed to the board.

program_proj Build and program only the current project to the target device. In single-core applications, this

target is the same as the program target.

The build process performs the same operations as the build target. Upon completion, the

artifact is programmed to the board.

qprogram Quick programs a built application to the target device without rebuilding.

This target allows programming an existing artifact to the board without a build step.

qprogram_proj Programs a built project to the target device without rebuilding. In single-core applications, this

target is the same as the qprogram target.

This target allows programming an existing artifact to the board without a build step..

clean Cleans the /build/<TARGET> directory.

The directory and all its contents are deleted from disk.

help Prints the help documentation.

Use the CY_HELP=<name of target or variable> to see the verbose documentation for

a given target or a variable.

User guide 41 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

ModusToolbox™ build system

Target Description

prebuild Generates code for the application.

Runs configurators and custom prebuild commands to generate source code.

4.8.2 IDE make targets

Target Description

eclipse Generates Eclipse IDE launch configs and project files.

This target generates a .cproject and a .project if they do not exist in the application root directory.

vscode Generates VS Code IDE files.

This target generates VS Code files for debug/program launches, IntelliSense, and custom tasks. These

overwrite the existing files in the application directory except for settings.json.

ewarm /

ewarm8

This target generates an IAR Embedded Workbench compatible .ipcf file that can be imported into IAR-

EW. The .ipcf file is overwritten every time this target is run.

Note: Project generation requires Python 3 to be installed and present in the PATH variable.

Note: For applications that were created using core-make-3.0 or older, you must use the

make ewarm8 command instead.

uvision /

uvision5

Generates a Keil µVision IDE .cprj file.

This target generates a CMSIS-compatible file that can be imported into Keil µVision. The file is

overwritten every time this target is run. Files in the default cmsis output directory will be automatically

excluded when calling make uvision.

Note: Project generation requires Python 3 to be installed and present in the PATH variable.

Note: For applications that were created using core-make-3.0 or older, you must use the

make uvision5 command instead.

4.8.3 Utility make targets

Target Description

progtool Performs specified operations on the programmer/firmware-loader. Only available for devices that

use KitProg3.

This target expects user-interaction on the shell while running it. When prompted, you must specify

the command(s) to run for the tool.

printlibs Prints the status of the library repos.

This target parses through the library repos and prints the SHA1 commit. It also shows whether the

repo is clean (no changes) or dirty (modified or new files).

check Checks for the necessary tools.

Not all tools are necessary for every build recipe. This target allows you to get an idea of which

tools are missing if a build fails in an unexpected way.

User guide 42 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

ModusToolbox™ build system

4.9 Available make variables

The following variables customize various make targets. They can be defined in the application Makefile or
passed through the make invocation. The following sections group the variables for how they can be used.

4.9.1 Basic configuration make variables

These variables define basic aspects of building an application. For example:

make build TOOLCHAIN=GCC_ARM CONFIG=CustomConfig -j8

Variable Description

TARGET Specifies the target board/kit (that is, BSP). For example, CY8CPROTO-062-4343W.

Example usage: make build TARGET=CY8CPROTO-062-4343W

CORE Specifies the name of the Arm core for which a project is building (e.g. CM4).

Example Usage: make build CORE=CM4

Use this variable to select compiler and linker options to build a project for a specified Arm core.

CORE_NAME Specifies the name of the on-chip core for which a project is building (e.g. CM7_0).

Example Usage: make build CORE_NAME=CM7_0

Use this variable to select compiler and linker options to build a project for a specified on-chip

core.

Note: This variable is applicable for some multi-core devices only (e.g. XMC7xxx).

APPNAME Specifies the name of the application. For example, "AppV1" > AppV1.elf.

Example usage: make build APPNAME="AppV1"

This variable is used to set the name of the application artifact (programmable image).

Note: This variable may also be used when generating launch configs when invoking the

eclipse target.

TOOLCHAIN Specifies the toolchain used to build the application. For example, GCC_ARM.

Example Usage: make build TOOLCHAIN=IAR

Supported toolchains for this include GCC_ARM, IAR, and ARM.

Note: When setting TOOLCHAIN=IAR, you should also specify the heap type using LDFLAGS.

The --advanced_heap option is required if the program uses a library that requires it.

CONFIG Specifies the configuration option for the build [Debug Release].

Example Usage: make build CONFIG=Release

The CONFIG variable is not limited to Debug/Release. It can be other values. However in those

instances, the build system will not configure the optimization flags. Debug=lowest optimization,

Release=highest optimization.

The optimization flags are toolchain specific. If you go with your custom config, then you can

manually set the optimization flag in the CFLAGS.

VERBOSE Specifies whether the build is silent [false] or verbose [true].

Example Usage: make build VERBOSE=true

Setting VERBOSE to true may help in debugging build errors/warnings. By default, it is set to

false.

User guide 43 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

ModusToolbox™ build system

4.9.2 Advanced configuration make variables

These variables define advanced aspects of building an application.

Variable Description

SOURCES Specifies C/C++ and assembly files outside of application directory.

Example Usage (within Makefile): SOURCES+=path/to/file/Source1.c

This can be used to include files external to the application directory. The path can be

both absolute or relative to the application directory.

INCLUDES Specifies include paths outside of the application directory.

Example Usage (within Makefile): INCLUDES+=path/to/headers

Note: These MUST NOT have -I prepended. The path can be either absolute or relative

to the application directory.

DEFINES Specifies additional defines passed to the compiler.

Example Usage (within Makefile): DEFINES+=EXAMPLE_DEFINE=0x01

Note: These MUST NOT have -D prepended.

VFP_SELECT Selects hard/soft ABI or full software for floating-point operations [softfp hardfp

softfloat].

If not defined, this value defaults to softfp.

Example Usage (within Makefile): VFP_SELECT=hardfp

VFP_SELECT_PRECISION Selects single-precision or double-precision operating mode for floating-point

operations.

If not defined, this value defaults to double-precision. Enable single-precision mode by

using the "singlefp" option.

Example Usage (within Makefile): VFP_SELECT_PRECISION=singlefp

CFLAGS Prepends additional C compiler flags.

Example Usage (within Makefile): CFLAGS+= -Werror -Wall -O2

CXXFLAGS Prepends additional C++ compiler flags.

Example Usage (within Makefile): CXXFLAGS+= -finline-functions

ASFLAGS Prepends additional assembler flags.

Usage is similar to CFLAGS.

LDFLAGS Prepends additional linker flags.

Example Usage (within Makefile): LDFLAGS+= -nodefaultlibs

LINKER_SCRIPT Specifies a custom linker script location.

Example Usage (within Makefile):
LINKER_SCRIPT=path/to/file/Custom_Linker1.ld

This linker script overrides the default.

Note: Additional linker scripts can be added for GCC via the LDFLAGS variable as a -L

option.

COMPONENTS Adds component-specific files to the build.

Example Usage (within Makefile): COMPONENTS+=CUSTOM_CONFIGURATION

Create a directory named COMPONENT_<VALUE> and place your files. Then include the

following make variable to have that feature library be included in the build. For

example, create a directory named COMPONENT_ACCELEROMETER into auto-discovery.

Then add the following make variable to the Makefile: COMPONENT=ACCELEROMETER.

If the make variable does not include the <VALUE>, then that library will not be

included in the build.

User guide 44 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

ModusToolbox™ build system

Variable Description

DISABLE_COMPONENTS Removes component-specific files from the build.

Example Usage (within Makefile): DISABLE_COMPONENTS=BSP_DESIGN_MODUS

Include a <VALUE> to this make variable to have that feature library be excluded in the

build. For example, to exclude the contents of the COMPONENT_BSP_DESIGN_MODUS

directory, set DISABLE_COMPONENTS=BSP_DESIGN_MODUS.

SEARCH List of paths to include in auto-discovery. For example, ../mtb_shared/lib1.

Example Usage (within Makefile):
SEARCH+=directory_containing_source_files

The SEARCH variable can also be used by the application to include other directories to

auto-discovery.

SKIP_CODE_GEN Disables code generation from configurators when building.

When set to a non-empty value, the build process will no longer run code generation

from configurators.

MERGE List of projects in the application to generate a combined hex file from.

By default, building a multi-project application will generate a combined hex file from its

sub-projects. This variable can be set from the application Makefile to override the set of

projects to generate combined hex file from.

VCORE_ATTRS Virtual core attribute.

Currently supported values are "TRUSTZONE_SECURE" and

"TRUSTZONE_NON_SECURE" which specify the core property for Arm TrustZone.

TRUSTZONE_VENEER The path of the veneer object file used for Arm TrustZone.

When specified for a secure project, it specifies the path of the veneer object file to

generated. When specified for a non-secure project, it specifies the path of the veneer

object file to include.

4.9.3 BSP make variables

Variable Description

DEVICE Device ID for the primary MCU on the target board/kit. Set by bsp.mk.

The device identifier is mandatory for all board/kits.

ADDITIONAL_DEVICES IDs for additional devices on the target board/kit. Set by bsp.mk.

These include devices such as radios on the board/kit. This variable is optional.

BSP_PROGRAM_INTERFACE Specifies the debugging and programming interface to use. The default value and

valid values all depend on the BSP.

Possible values include KitProg3, JLink, and FTDI. Most BSPs will only support a

subset of this list.

User guide 45 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

ModusToolbox™ build system

4.9.4 Getlibs make variables

These variables are used with the make getlibs target.

Note: When entering variables that require a path, use a Windows-style path (not Cygwin-style, like

/cygdrive/c/). Also, use forward slashes. For example, "C:/MyPath/ModusToolbox/tools_3.2."

Variable Description

MTB_USE_LOCAL_CONTENT If set to non-empty, enable local content storage.

Enable local content storage to allow use of ModusToolbox™ software

without requiring internet access. Refer to the LCS Manager CLI User guide

for more details.

CY_GETLIBS_PATH Path to the intended location of libs info directory.

The directory contains local libraries and metadata files about shared

libraries.

CY_GETLIBS_DEPS_PATH Path to where the library-manager stores .mtb files.

Setting this path allows relocating the directory that the library-manager

uses to store the .mtb files in your application. The default location is in a

directory named deps.

CY_GETLIBS_SHARED_PATH Relative path to the shared repo location.

All .mtb files have the format, <URI><COMMIT><LOCATION>. If the

<LOCATION> field begins with $$ASSET_REPO$$, then the repo is

deposited in the path specified by the CY_GETLIBS_SHARED_PATH

variable. The default is set from the project Makefile.

CY_GETLIBS_SHARED_NAME Directory name of the shared repo location.

All .mtb files have the format, <URI><COMMIT><LOCATION>. If the

<LOCATION> field begins with $$ASSET_REPO$$, then the repo is

deposited in the directory specified by the CY_GETLIBS_SHARED_NAME

variable. By default, this is set from the project Makefile

4.9.5 Path make variables

These variables are used to specify various paths.

Note: When entering variables that require a path, use a Windows-style path (not Cygwin-style, like

/cygdrive/c/). Also, use forward slashes. For example, "C:/MyPath/ModusToolbox/tools_3.2."

Variable Description

CY_APP_PATH Relative path to the top-level of application. For example, ./

Settings this path to other than ./ allows the auto-discovery mechanism to search

from a root directory location that is higher than the application directory. For

example, CY_APP_PATH=../../ allows auto-discovery of files from a location

that is two directories above the location of the Makefile.

User guide 46 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

ModusToolbox™ build system

Variable Description

CY_COMPILER_GCC_ARM_DIR Absolute path to the gcc-arm toolchain directory.

Setting this path overrides the default GCC_ARM toolchain directory. It is used when

the compiler is located at a non-default directory. Make uses this variable for the

path to the assember, compiler, linker, objcopy, and other toolchain binaries.

For example, CY_COMPILER_GCC_ARM_DIR=C:/Program Files (x86)GNU
Arm Embedded Toolchain/10 2021.10

Note: When set in the Makefile, no quotes are required.

CY_COMPILER_IAR_DIR Absolute path to the IAR toolchain directory.

Setting this path overrides the default IAR toolchain directory. It is used when the

compiler is located at a non-default directory. Make uses this variable for the path to

the assember, compiler, linker, objcopy, and other toolchain binaries.

For example, CY_COMPILER_IAR_DIR=C:/Program Files/IAR
Systems/Embedded Workbench 9.1/arm

Note: When set in the Makefile, no quotes are required.

CY_COMPILER_ARM_DIR Absolute path to the ARM toolchain directory.

Setting this path overrides the default ARM toolchain directory. It is used when the

compiler is located at a non-default directory. Make uses this variable for the path to

the assember, compiler, linker, objcopy, and other toolchain binaries.

For example, CY_COMPILER_ARM_DIR=C:/Program
Files/ARMCompiler6.16

Note: When set in the Makefile, no quotes are required.

CY_TOOLS_DIR Absolute path to the tools root directory.

Example Usage: make build
CY_TOOLS_DIR="path/to/ModusToolbox/tools_x.y"

Applications must specify the tools_<version> directory location, which contains the

root Makefile and the necessary tools and scripts to build an application. Application

Makefiles are configured to automatically search in the standard locations for

various platforms. If the tools are not located in the standard location, you may

explicitly set this.

CY_BUILD_LOCATION Absolute path to the build output directory (default: pwd/build).

The build output directory is structured as /TARGET/CONFIG/. Setting this variable

allows the build artifacts to be located in the directory pointed to by this variable.

CY_PYTHON_PATH Specifies the path to a specific Python executable.

Example Usage:
CY_PYTHON_PATH="path/to/python/executable/python.exe"

For make targets that depend on Python, the build system looks for Python 3 in the

user's PATH and uses that to invoke python.

If however CY_PYTHON_PATH is defined, it will use that python executable.

MTB_JLINK_DIR Specifes the path to the SEGGER J-Link software install directory "JLink".

Example Usage: MTB_JLINK_DIR:=C:/Program Files/SEGGER/JLink

Setting this path allows the make system to locate the JLink executable when calling

make program. If not specified, make will default to the JLink executable in the

PATH variable.

When generating launch configurations for IDEs, this will override the default J-Link

path.

User guide 47 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

ModusToolbox™ build system

4.9.6 Miscellaneous make variables

These are miscellaneous variables used for various make targets.

Note: When entering variables that require a path, use a Windows-style path (not Cygwin-style, like

/cygdrive/c/). Also, use forward slashes. For example, "C:/MyPath/ModusToolbox/tools_3.2."

Variable Description

CY_IGNORE Adds to the directory and file ignore list. For example, ./file1.c ./inc1

Example Usage: make build CY_IGNORE="path/to/file/ignore_file"

Directories and files listed in this variable are ignored in auto-discovery. This

mechanism works in combination with any existing .cyignore files in the application.

CY_IDE_PRJNAME This variable contains the name that will be used to create the application name and

support files for an IDE during application export.

Use this variable to provide a custom name of an application for the IDE during

application export. If CY_IDE_PRJNAME is not set on the command line, then

APPNAME (which is specified in the Makefile) is used as the default. This name can be

important for some IDEs to set a correct meaningful name for the application,

support files, and launch configurations in the IDE.

CY_SIMULATOR_GEN_AUTO If set to 1, automatically generate a simulator archive (if supported by the target

device).

When enabled, the build make target will generate a debugging tgz archive for the

Infineon online simulator as part of the postbuild process.

4.9.7 Tools targets

Note: There are various targets to launch tools and configurators that are not part of the make system,

but they can be used in the application directory.The following table lists a few of the common

targets as a convenience. Refer to the applicable user guide for details for the given configurator

or tool.

Target Description

bsp-assistant Launches the BSP Assistant with the active BSP for the application.

bt-configurator Launches the Bluetooth® Configurator GUI for the application's cybt file.

capsense-configurator Launches the CAPSENSE™ Configurator GUI for the target's cycapsense file.

capsense-tuner Launches the CAPSENSE™ Tuner GUI for the target's cycapsense file.

device-configurator Launches the Device Configurator on the application's *.modus file.

library-manager Launches the Library Manager for the application to add/remove libraries and to

upgrade/downgrade existing libraries.

lin-configurator Launches the LIN Configurator GUI for the target's mtblin file.

qspi-configurator Launches the QSPI Configurator GUI for the target's cyqspi file.

seglcd-configurator Launches the Segment LCD Configurator GUI for the target's cyseglcd file.

smartio-configurator Launches the Smart I/O Configurator GUI for the target's modus file.

usbdev-configurator Launches the USB Configurator GUI for the target's cyusbdev file.

User guide 48 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Board support packages

5 Board support packages

5.1 Overview

A BSP provides a standard interface to a board's features and capabilities. The API is consistent across our kits.
Other software (such as middleware or an application) can use the BSP to configure and control the hardware.
BSPs do the following:

• initialize device resources, such as clocks and power supplies to set up the device to run firmware.

• contain default linker scripts and startup code that you can customize for your board.

• contain the hardware configuration (structures and macros) for both device peripherals and board

peripherals.

• provide abstraction to the board by providing common aliases or names to refer to the board peripherals,

such as buttons and LEDs.

• include the libraries for the default capabilities on the board. For example, the BSP for a kit with

CAPSENSE™ capabilities includes the CAPSENSE™ library.

5.2 What's in a BSP

This section presents an overview of the key resources that are part of a BSP. Applications can share libraries.
BSPs are owned by an application. For more details about library management, refer to the Library Manager

user guide.

The following shows a typical PSoC™ 6 BSP located in the bsp subdirectory.

https://www.infineon.com/ModusToolboxLibraryManager
https://www.infineon.com/ModusToolboxLibraryManager

User guide 49 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Board support packages

The following sections describe the various files and directories in a typical BSP:

Note: Starting with ModusToolbox 3.x, the COMPONENT_CUSTOM_DESIGN_MODUS mechanism will no

longer be supported. Thus, the COMPONENT_DESIGN_MODUS folder can be removed from the BSP

and contents of the folder can be moved to the bsp root directory.

5.2.1 TARGET

This is the top-level directory for a BSP. All BSPs begin with "TARGET" and this is referenced in the application
Makefile for the active BSP.

5.2.2 config

This directory contains the configuration files (such as design.modus) for use with various BSP configurator
tools, including Device Configurator, QSPI Configurator, and CAPSENSE™ Configurator. At the start of a build,

the build system invokes these tools to generate the source files in the GeneratedSource directory.

5.2.3 COMPONENT

Some applications may have "COMPONENT" subdirectories. These directories are conditional, based on what
the BSP is being built for. For example, the PSoC™ 6 BSPs include COMPONENT directories to restrict which files
are used when building for the Arm Cortex M4 or M0+ core.

5.2.4 deps subdirectory

The deps subdirectory inside the BSP contains .mtbx files for various library dependencies for the BSP.

5.2.5 docs subdirectory

The docs subdirectory contains the documentation in HTML format for the selected BSP.

5.2.6 Support files

Different BSPs will contain various files, such as the API interface to the board's resources. For example, a
typical PSoC™ 6 BSP contains the following:

• cybsp.c /.h – You need to include only cybsp.h in your application to use all the features of a BSP.

Call cybsp_init () from cybsp.c to initialize the board.

• cybsp_types.h – This currently contains Doxygen comments. It is intended to contain the aliases (macro

definitions) for all the board resources, as needed.

• system_psoc6.h – This file provides information about the chip initialization that is done pre- main().

5.2.7 bsp.mk

This file defines the DEVICE and other BSP-specific make variables such as COMPONENTS. These are described
in the ModusToolbox™ build system chapter. It also defines board-specific information such as the device ID,
compiler and linker flags, pre-builds/post-builds, and components used with this board implementation.

5.2.8 README/RELEASE.md

These are documentation files. The README.md file describes the BSP overall, while the RELEASE.md file covers
changes made to version of the BSP.

User guide 50 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Board support packages

5.2.9 BTSDK-specific BSP files

BTSDK BSPs may optionally provide the following types of files:

• wiced_platform.h – Platform specific structures to define hardware information such as max number of

GPIOs, LEDs or.user buttons available

• Makefile – Provided to support LIB flow applications (BTSDK 2.7 and earlier). Not used in MTB flow BTSDK

2.8 or later applications.

• *.hex – binary application image files that are used as part of the embedded application creation, program,

and/or OTA (Over-The-Air) upgrade processes.

• platform*.c/h – Platform specific source and header files used by platform and application initialization

functions.

• <BSP_NAME>*.cgs – Patch configuration records in text format, can be multiple copies supporting various

board configurations.

• <BSP_NAME>*.btp – Configuration options related to building and programming the application image, can

be multiple copies supporting various board configurations.

5.3 Creating your own BSP

For ModusToolbox™ version 3.x, there is a tool called the BSP Assistant to create and modify BSPs. Refer to the
BSP Assistant user guide for details about using that tool.

For a better understanding of the contents and structure of a BSP and more detailed information about how to
create a custom BSP, as well as update the Wi-Fi and Bluetooth® connectivity device and firmware in a BSP,

refer to Application Note AN235297.

http://www.infineon.com/ModusToolboxBSPAssistant

User guide 51 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Manifest files

6 Manifest files

6.1 Overview

Manifests are XML files that tell the Project Creator and Library Manager how to discover the list of available
boards, example projects, libraries and library dependencies. There are several manifest files.

• The "super-manifest" file contains a list of URLs that software uses to find the board, code example, and

middleware manifest files.

• The "app-manifest" file contains a list of all code examples that should be made available to the user.

• The "board-manifest" file contains a list of the boards that should be presented to the user in the new
project creation tool as well as the list of BSP packages that are presented in the Library Manager tool.

There is also a separate BSP dependencies manifest that lists the dependent libraries associated with each

BSP.

• The "middleware-manifest" file contains a list of the available middleware (libraries). Each middleware

item can have one or more versions of that middleware available. There is also a separate middleware

dependencies manifest that lists the dependent libraries associated with each middleware library.

There are two versions of manifest files: ones for earlier versions of ModusToolbox™ software (2.1 and earlier),

and one for newer versions of ModusToolbox™ (2.2 and later, aka "fv2"). The older super-manifest file for use
with earlier versions contains only references manifests that contain items that support the older
ModusToolbox™ flow. The newer super-manifest file for use with the ModusToolbox™ 2.2 release and later

contains references to all the manifest files.

User guide 52 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Manifest files

6.2 Create your own manifest

By default, the ModusToolbox™ tools look for our manifest files maintained on our server. So, the initial lists of
BSPs, code examples, and middleware available to use are limited to our manifest files. You can create your

own manifest files on your servers or locally on your machine, and you can override where ModusToolbox™
tools look for manifest files.

To use your own examples, BSPs, and middleware, you need to create manifest files for your content and a

super-manifest that points to your manifest files. To see examples of the syntax of super-manifest and manifest
files, you can look at files provided on GitHub:

• Super-manifest: https://github.com/Infineon/mtb-super-manifest

• Code example manifest: https://github.com/Infineon/mtb-ce-manifest

• BSP manifest (including dependencies): https://github.com/Infineon/mtb-bsp-manifest

• Middleware manifest (including dependencies): https://github.com/Infineon/mtb-mw-manifest

Make sure you look at the "fv2" manifest files if you are using the flow for ModusToolbox™ version 2.2 and later.

Note: You can point to local super-manifest and manifest files by using file:/// with the path instead of
https://. For example:

 file:///C:/MyManifests/my-super-manifest.xml

The manifest system is flexible, and there are multiple paths you can follow to customize the manifests.

• You can create supplementary super-manifest files that identify additional content. The tools will merge

your additional content with the default super-manifest.

• You can replace the default super-manifest file used by the tools.

6.2.1 Supplementing super-manifest using manifest.loc

In addition to the standard super-manifest file, you can specify "custom" super-manifest files. This allows you

to add additional items (BSPs, code examples, libraries) along with the standard items. You can do this by
creating a manifest.loc file in a hidden subdirectory in your home directory named ".modustoolbox":

<user_home>/.modustoolbox/manifest.loc

For example, a manifest.loc file may have:

This points to the IOT Expert template set

https://github.com/iotexpert/mtb2-iotexpert-manifests/raw/master/iotexpert-super-

manifest.xml

If this file exists, then each line in the file is treated as the URL to another super-manifest file, which is exactly

like the standard super-manifest file. The data from these manifests is combined with data from the standard
super-manifest. See the Conflicting data section for dealing with conflicts.

6.2.2 Replacing standard super-manifest using variable

The location of the standard super-manifest file is hard coded into all of the tools. However, you may override
this location by setting the CyRemoteManifestOverride environment variable. When this variable is set, the
tools use the value of this variable as the location of the super-manifest file and the hard-coded location is
ignored. This removes all Infineon content from the tools, by default. For example:

CyRemoteManifestOverride=https://myURL.com/mylocation/super-manifest.xml

https://github.com/Infineon/mtb-super-manifest
https://github.com/Infineon/mtb-ce-manifest
https://github.com/Infineon/mtb-bsp-manifest
https://github.com/Infineon/mtb-mw-manifest

User guide 53 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Manifest files

6.2.3 Processing

The process for using the manifest files is the same for all tools that use the data:

• The first level is to access the super-manifest file(s) to obtain a list of manifest files.

• The second level is to retrieve the manifest data from any packs that were installed.

• The third level is to retrieve the manifest data from manifest.loc file, if it exists.

All the manifest data is merged into a single global data model in the tool. See the Conflicting data section for
dealing with conflicts. There is no per-file scoping. All data is merged before it is presented. The combination of
a super manifest file and the merging of all of the data allows various contributors, including third-party

contributors, to make new data available without requiring coordinated releases between the various
contributors.

6.2.4 Conflicting data

Ultimately, data from all of the super-manifest and manifest files are combined into a single data collection of

BSPs, code examples, and middleware. During the collation of this data, there may be conflicting data entries.

There are two types of conflicts.

The first kind is a conflict between data that comes from the level 1 primary super-manifest (and linked

manifests), data that comes from the level 2 pack manifest, if present, and data that comes from the level 3
manifest.loc file, if present. In this case, the data in the level 2 pack manifest overrides the data from the level 1

standard super-manifest, and the data in the level 3 manifest.loc file overrides the data in the level 2 pack
manifest. This mechanism allows you to intentionally override data that is in the standard location. In this case,

no error or warning is issued. It is a valid use case.

The second kind of conflict is between data coming from the same source (that is, both from primary or both
from secondary). In this case, an error message is printed and all pieces of conflicting data are removed from
the data model. This is done because in this case, it is not clear which data item is the correct one.

6.3 Local content storage

The Local content storage (LCS) feature provides a command-line tool called lcs-manager-cli that allows you to
create your own local, offline content on demand.

For more details, refer to the LCS Manager CLI user guide.

super-manifest

pack manifest

manifest.loc

Level 1

Level 2

Level 3

https://www.infineon.com/ModusToolboxLCSManager

User guide 54 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Using applications with third-party tools

7 Using applications with third-party tools

ModusToolbox™ software includes a variety of ways to use applications with third-party tools. This chapter
covers the following:

• Version Control and sharing applications

• Using supported IDEs

• Generating files for XMC™ Simulator tool

7.1 Version Control and sharing applications

If you are working on a design with more than one person, it is common to share an application using some
type of version control system, by manually copying files, or exporting from a supported IDE. This section

covers the files to include or exclude when sharing, as well as how to share using various methods.

7.1.1 Files to include/exclude

No matter which method you choose to share an application, you should know what is critical to copy or check
in to version control, as well as what can be regenerated easily. The main files to consider when sharing an

application include anything that you have changed or added, and that will not be regenerated. These files
include source code, BSPs and configurations, Makefile, etc.

There are several directories in the application that can be recreated and therefore do not need to be copied or

checked into version control. These include the libs, mtb_shared, build, and GeneratedSource directories. The

processes that create them are:

• libs and mtb_shared: Created by running the Library Manger and clicking the Update button, or by running
make getlibs on the command line. Either one will clone the libraries from GitHub to the appropriate

locations.

• build: Created during the build process.

• GeneratedSource: Generated by running the associated configurator such as the Device Configurator or

Bluetooth® Configurator. The build process run Configurators automatically if the GeneratedSource files are

out of date.

7.1.2 Using version control software

If you are working on a production design, you likely use version control software to manage the design and

any potential revisions. This allows all users to stay synchronized with the latest version of an application.
ModusToolbox™ assets are provided using Git, but you can use any version control method or software that you

prefer.

ModusToolbox™ code examples have a default .gitignore file that excludes directories that can be easily
recreated, as well as files containing IDE-specific information that need not be checked in. If you are using Git as

your version control software, you can often use that file as-is. However, you are free to change it to fit your
needs. For example, you may want to check in all of the libraries from libs and mtb_shared, even though they

are available on Infineon's GitHub site.

If you are using version control software other than Git, you can use the .gitignore file as a guide for configuring

the software that you are using.

User guide 55 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Using applications with third-party tools

Once you have an application checked in to your desired version control software, sharing the application with
a new user is straight-forward. The steps include:

1. Get a copy of the checked-in data. This will vary depending on the version control software (for example
using Git, git clone <url>).

2. Run the Library Manager and click the Update button, or open a terminal and run the command
make getlibs. Either one will get all of the libraries required by the application.

3. Work with the application as usual. The build and GeneratedSource files will be created automatically as

needed.

4. When finished with your changes, check in your updates following your version control process.

7.1.3 Manual file copy

If you are not using version control software, you can just copy a complete application directory from one user
to another. If desired, you can exclude the directories listed under Files to include/exclude since the libraries
can be recreated, and the other files are regenerated when the application is built.

7.1.4 Saving/exporting from IDE

Another method to share files is by using your preferred IDE's export or Save As method. Refer to your IDE's
documentation for details, keeping in mind certain files and folders need not be exported.

One such example is the Eclipse IDE Export as Archive. Refer to the Eclipse IDE for ModusToolbox™ user guide
for more details.

7.2 Using supported IDEs

7.2.1 Overview

As described in the Getting started chapter, the Project Creator tool includes a Target IDE option that
generates files for the selected IDE. Also, as noted in the ModusToolbox™ build system chapter, the make

command includes various targets for the differerent supported IDEs. We have created user guides for each of
them.

7.2.2 Eclipse

The easiest way to create a ModusToolbox™ application for Eclipse is to use the Eclipse IDE included with the
ModusToolbox™ software. The tools package includes an Eclipse plugin that provides links to launch the

Project Creator tool and then import the application into Eclipse. For details, refer to the Eclipse IDE for
ModusToolbox™ user guide.

https://www.infineon.com/MTBEclipseIDEUserGuide
https://www.infineon.com/MTBEclipseIDEUserGuide
https://www.infineon.com/MTBEclipseIDEUserGuide

User guide 56 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Using applications with third-party tools

7.2.3 VS Code

For VS Code, you can create an application using the Project Creator tool, or export an existing application
using make vscode. Then, open the workspace file in VS Code. For more details, refer to the Visual Studio Code

for ModusToolbox™ user guide.

7.2.4 IAR EWARM (Windows only)

For IAR Embedded Workbench, you can create an application using the Project Creator tool, or export an
existing application using make ewarm TOOLCHAIN=IAR.

Note: For applications that were created using core-make-3.0 or older, you must use the make ewarm8

command instead.

Then, follow procedures in the IAR Embedded Workbench for ModusToolbox™ user guide to open and configure

the application.

7.2.5 Export to Keil µVision (Windows only)

For Keil µVision, you can create an application using the Project Creator tool, or export an existing application
using make uvision TOOLCHAIN=ARM.

Note: For applications that were created using core-make-3.0 or older, you must use the
make uvision5 command instead.

Then, follow procedures in the Keil µVision for ModusToolbox™ user guide to open and configure the

application.

7.3 Multi-core debugging

Infineon provides different multi-core MCUs in its portfolio. Sometimes you need to debug complex problems
usually connected with IPC. Multi-core debugging allows you to simultaneously debug two or more cores

available on the target MCU. This section applies to PSoC™ 6 MCUs, as well as the XMC7000 device family.

Multi-core debugging is supported for the following IDEs: Eclipse IDE for ModusToolbox™, VS Code, IAR EWARM,
and Keil µVision. Refer to the applicable user guide for the IDE you plan to use.

7.3.1 Timing

When launching a multi-core debug group, do not start debugging (resume, step, etc.) in the first launched

sessions until all the remaining launch configurations in a group have been initiated and started successfully.

7.3.2 CM0+ core rule

In PSoC™ 6, TRAVEO™ 2, and XMC7000 devices, system calls are always performed by the primary CM0+ core,

even if it is initiated (via NMI) by the secondary core (CM4 or CM7). Because of this, you have to follow this rule
for a smooth debugging experience of a multi-core application:

Attention: The CM0+ core must NOT be halted (suspended at the breakpoint) when another core (CM4 or
CM7) is requesting system calls. You must resume the CM0+ core and let it run some code in

your application [for example, Cy_SysLib_Delay()], or just perform several single-step
operations, while the CM4 code is invoking the system call.

https://www.infineon.com/MTBVSCodeUserGuide
https://www.infineon.com/MTBVSCodeUserGuide
https://www.infineon.com/MTBIARUserGuide
https://www.infineon.com/MTBuVisionUserGuide

User guide 57 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Using applications with third-party tools

If you deviate from this rule, you may experience different issues depending on the usage scenarios, including
the application state, IDE, and debugger:

• The debugger can be confused by the unexpected value of the Program Counter for the CM0+ core when,
instead of performing the single-step operation, it jumps to the SROM area executing the system call
requested by the CM4 or CM7 core.

• The CM4 or CM7 core may be stuck in an endless loop in the code that just initiated the system call and
waiting for its completion, while the CM0+ core is suspended at the breakpoint.

7.4 Generating files for XMC™ Simulator tool

For the XMC1100, XMC1200, XMC1300, and XMC1400 families of devices, you can generate an archive file to
upload to the XMC™ Simulator tool (https://design.infineon.com/tinaui/designer.php) for simulation and

debugging. To do this:

Specify the CY_SIMULATOR_GEN_AUTO=1 variable as follows:

• Edit the application Makefile to add the CY_SIMULATOR_GEN_AUTO=1 variable, and then build the

application, or

• Add the variable on the command line: make build CY_SIMULATOR_GEN_AUTO=1

When the build completes, it generates an archive file (<application-name>.tar.tgz) in the <Application-

Name>\build\<Kit-Name>\Debug directory, and the build message displays the URL to the appropriate
simulator tool. For example:

==

= Generating simulator archive file =

==

Simulator archive file C:/Users/XYZ/mtw3.2/5699/xmc-

2/Empty_XMC_App/build/KIT_XMC12_BOOT_001/Debug/mtb-example-xmc-empty-app.tar.tgz

successfully generated

• If using the Eclipse IDE, click the link in the Quick Panel under Tools to open the XMC™ Simulator tool in the

default web browser.

• If using the command line, run make online_simulator.

Upload the generated archive file to the XMC™ Simulator tool, and follow the tool's instructions for using the
tool as appropriate.

https://design.infineon.com/tinaui/designer.php

User guide 58 002-29893 Rev. *T

 2024-02-19

ModusToolbox™ tools package user guide

Revision history

Revision history

Revision Date Description of change

** 2020-03-24 New document.

*A 2020-03-27 Updates to screen captures and associated text.

*B 2020-04-01 Fix broken links.

*C 2020-04-29 Fix incorrect link.

*D 2020-08-28 Updates for ModusToolbox™ 2.2.

*E 2020-09-23 Corrections to Build system and Board support packages chapters.

*F 2020-09-29 Added links to KBAs; updated text for cyignore.

*G 2020-10-02 Added details for BTSDK v2.8 BSPs/libraries.

*H 2021-01-14 Updated Manifest chapter and fixed broken links.

*I 2021-03-23 Updates for ModusToolbox™ 2.3.

*J 2021-05-24 Updated information for creating a custom BSP.

*K 2021-09-27 Updates for ModusToolbox™ 2.4.

*L 2021-11-29 Merged chapter 3 (software overview) into chapter 1 (introduction).

Updated sections 6.2.3 and 6.2.4 with notes and minor details.

Added section 6.3 with information for patched flashloaders and 3rd party IDEs.

*M 2022-02-24 Added link to PSoC™ 4 Application Note.

*N 2022-04-07 Updated various links to the Infineon website.

*O 2022-09-29 Updated for version 3.0.

*P 2022-10-06 Updated IAR multi-core instructions for XMC7000 and TRAVEO™ II.

*Q 2022-11-01 Updated IAR export instructions for programming and erasing external memory.

*R 2023-01-23 Update to the BSP chapter to remove duplicate information.

Update to the Export to IAR section for XMC1000/XMC4000 devices.

*S 2023-06-02 Updates for version 3.1.

Added information for the Dashboard.

Updated make variables.

Removed information for using 3rd party IDEs; those instructions are now included in

separate user guides.

Removed old offline content and cache variables.

Added information for Local Content Manager.

Added note when setting TOOLCHAIN=IAR that you should also specify the heap type

using LDFLAGS.

*T 2024-02-19 Updates for version 3.2.

Added information about the ModusToolbox™ Setup program.

Added a glossary of terms.

Added information about device-db.

Changed locking_commit.log to assetlocks.json.

Updated description for .cyignore.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

 Important notice Warnings

Edition 2024-02-19

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2024 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email: erratum@infineon.com

Document reference

002-29893 Rev. *T

The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”)

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and
standards concerning customer’s products and any
use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.

mailto:erratum@infineon.com

